Dynamic Variable Selection with Spike-and-Slab Process Priors
被引:16
作者:
Rockova, Veronika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USAUniv Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
Rockova, Veronika
[1
]
McAlinn, Kenichiro
论文数: 0引用数: 0
h-index: 0
机构:
Temple Univ, Fox Sch Business, 1801 Liacouras Walk, Philadelphia, PA 19122 USAUniv Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
McAlinn, Kenichiro
[2
]
机构:
[1] Univ Chicago, Booth Sch Business, 5807 S Woodlawn Ave, Chicago, IL 60637 USA
[2] Temple Univ, Fox Sch Business, 1801 Liacouras Walk, Philadelphia, PA 19122 USA
We address the problem of dynamic variable selection in time series regression with unknown residual variances, where the set of active predictors is allowed to evolve over time. To capture time-varying variable selection uncertainty, we introduce new dynamic shrinkage priors for the time series of regression coefficients. These priors are characterized by two main ingredients: smooth parameter evolutions and intermittent zeroes for modeling predictive breaks. More formally, our proposed Dynamic Spike-and-Slab (DSS) priors are constructed as mixtures of two processes: a spike process for the irrelevant coefficients and a slab autoregressive process for the active coefficients. The mixing weights are themselves time-varying and depend on lagged values of the series. Our DSS priors are probabilistically coherent in the sense that their stationary distribution is fully known and characterized by spike-and-slab marginals. For posterior sampling over dynamic regression coefficients, model selection indicators as well as unknown dynamic residual variances, we propose a Dynamic SSVS algorithm based on forward-filtering and backward-sampling. To scale our method to large data sets, we develop a Dynamic EMVS algorithm for MAP smoothing. We demonstrate, through simulation and a topical macroeconomic dataset, that DSS priors are very effective at separating active and noisy coefficients. Our fast implementation significantly extends the reach of spike-and-slab methods to big time series data.
机构:
Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
NYU, Dept Econ, New York, NY 10012 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
Bai, Jushan
Ng, Serena
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Brodie, Joshua
Daubechies, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Daubechies, Ingrid
De Mol, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, BelgiumPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
De Mol, Christine
Giannone, Domenico
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
Ctr Econ Policy Res, London EC1V ODG, EnglandPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
机构:
Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
NYU, Dept Econ, New York, NY 10012 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
Bai, Jushan
Ng, Serena
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Brodie, Joshua
Daubechies, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Daubechies, Ingrid
De Mol, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, BelgiumPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
De Mol, Christine
Giannone, Domenico
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
Ctr Econ Policy Res, London EC1V ODG, EnglandPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA