Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering

被引:30
|
作者
Santos, M. I. [1 ,2 ,3 ]
Pashkuleva, I. [2 ,3 ]
Alves, C. M. [2 ,3 ]
Gomes, M. E. [2 ,3 ]
Fuchs, S. [1 ]
Unger, R. E. [1 ]
Reis, R. L. [2 ,3 ]
Kirkpatrick, C. J. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Pathol, D-55101 Mainz, Germany
[2] PT Govt Associated Lab, IBB, Braga, Portugal
[3] Univ Minho, 3Bs Res Grp, Headquarters European Inst Excellence Tissue Engn, P-4806909 Taipas, Guimaraes, Portugal
关键词
MARROW STROMAL CELLS; FIBER-MESH SCAFFOLDS; FLOW PERFUSION; OSTEOGENIC DIFFERENTIATION; PROTEIN ADSORPTION; PLASMA TREATMENT; IN-VITRO; GROWTH; ADHESION; FIBRONECTIN;
D O I
10.1039/b819089e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Providing adequate vascularization is one of the main hurdles to the widespread clinical application of bone tissue engineering approaches. Due to their unique role in blood vessel formation, endothelial cells (EC) play a key role in the establishment of successful vascularization strategies. However, currently available polymeric materials do not generally support EC growth without coating with adhesive proteins. In this work we present argon plasma treatment as a suitable method to render the surface of a 3D starch-based scaffold compatible for ECs, this way obviating the need for protein pre-coating. To this end we studied the effect of plasma modification on surface properties, protein adsorption and ultimately on several aspects regarding EC behaviour. Characterization of surface properties revealed increased surface roughness and change in topography, while at the chemical level a higher oxygen content was demonstrated. The increased surface roughness of the material, together with the changed surface chemistry modulated protein adsorption as indicated by the different adsorption profile observed for vitronectin. In vitro studies showed that human umbilical vein ECs (HUVECs) seeded on plasma-modified scaffolds adhered, remained viable, proliferated, and maintained the typical cobblestone morphology, as observed for positive controls (scaffold pre-coated with adhesive proteins). Furthermore, genotypic expression of endothelial markers was maintained and neighbouring cells expressed PECAM-1 at the single-cell-level. These results indicate that Ar plasma modification is an effective methodology with potential to be incorporated in biomaterial strategies to promote the formation of vascularized engineered bone.
引用
收藏
页码:4091 / 4101
页数:11
相关论文
共 50 条
  • [21] 3D gel printing of porous calcium silicate scaffold for bone tissue engineering
    Zhinan Zhang
    Huiping Shao
    Tao Lin
    Yumeng Zhang
    Jianzhuang He
    Luhui Wang
    Journal of Materials Science, 2019, 54 : 10430 - 10436
  • [22] Progress of porous tantalum surface-modified biomaterial coatings in bone tissue engineering
    Liu, Aiguo
    Wang, Chenxu
    Zhao, Ziwen
    Zhu, Rui
    Deng, Shuang
    Zhang, Sitong
    Ghorbani, Farnaz
    Ying, Ting
    Yi, Chengqing
    Li, Dejian
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2025, 36 (01)
  • [23] 3D printing of personalized magnesium composite bone tissue engineering scaffold for bone and angiogenesis regeneration
    Wang, Wenzhao
    Wang, Ling
    Zhang, Boqing
    Shang, Shenghui
    Zhao, Chenxi
    Zhang, Wencan
    Chen, Jing
    Zhou, Changchun
    Zhou, Hengxing
    Feng, Shiqing
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [24] Effect of different pore sizes of 3D printed PLA-based scaffold in bone tissue engineering
    Buyuk, Nisa Irem
    Aksu, Didem
    Kose, Gamze Torun
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2023, 72 (13) : 1021 - 1031
  • [25] Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering
    Chen, Weiming
    Chen, Shuai
    Morsi, Yosry
    El-Hamshary, Hany
    El-Newehy, Mohamed
    Fan, Cunyi
    Mo, Xiumei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (37) : 24415 - 24425
  • [26] 3D printing to modulate the texture of starch-based food
    Bugarin-Castillo, Y.
    Rando, P.
    Clabaux, M.
    Moulin, G.
    Ramaioli, M.
    JOURNAL OF FOOD ENGINEERING, 2023, 350
  • [27] Decellularized tracheal scaffold as a promising 3D scaffold for tissue engineering applications
    Nahumi, Aida
    Peymani, Maryam
    Asadi, Asadollah
    Abdolmaleki, Arash
    Panahi, Yassin
    TISSUE & CELL, 2023, 85
  • [28] Computational Model of Perfusion for 3D Printed Bone Tissue Engineering Scaffold In Vitro Culturing
    Lara-Padilla, H.
    Wade, M. B.
    Rodriguez, C.
    Konstantinou, D.
    Dean, D.
    TISSUE ENGINEERING PART A, 2017, 23 : S84 - S84
  • [29] Performance of 3D printed PCL/PLGA/HA biological bone tissue engineering scaffold
    Ma, Zhiyong
    Wang, Qifan
    Xie, Wenjia
    Ye, Wenjie
    Zhong, Linna
    Huge, Jile
    Wang, Ying
    POLYMER COMPOSITES, 2021, 42 (07) : 3593 - 3602
  • [30] Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering
    Zhang, Xue
    Li, Xiao-Wu
    Li, Ji-Guang
    Sun, Xu-Dong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 42 : 362 - 367