BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES

被引:1
|
作者
Yan, Xuefang [1 ,2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Heibei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Peoples R China
关键词
Stein's square function; non-negative self-adjoint operator; Hardy spaces; Davies-Gaffney estimate; Plancherel type estimate; SPECTRAL MULTIPLIERS; RIESZ TRANSFORM; BOUNDS;
D O I
10.1016/S0252-9602(14)60057-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure A. Let L be a second order non-negative self-adjoint operator on L-2(X). Assume that the semigroup e(-tL) generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function G(delta)(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces H-L(p)(X) to L-P(X) for all 0 <p <= 1.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 50 条
  • [1] BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES
    闫雪芳
    Acta Mathematica Scientia, 2014, 34 (03) : 891 - 904
  • [2] Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on hardy spaces
    Yan, Xuefang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 61 - 82
  • [3] Boundedness of Stein’s square functions and Bochner-Riesz means associated to operators on hardy spaces
    Xuefang Yan
    Czechoslovak Mathematical Journal, 2015, 65 : 61 - 82
  • [4] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Cao, Jun
    Yang, Dachun
    Yang, Sibei
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 99 - 114
  • [5] Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators
    Jun Cao
    Dachun Yang
    Sibei Yang
    Revista Matemática Complutense, 2013, 26 : 99 - 114
  • [6] Boundedness of operators on Hardy spaces
    Ferenc, Weisz
    ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (3-4): : 541 - 557
  • [7] Boundedness of operators on Hardy spaces
    Ferenc Weisz
    Acta Scientiarum Mathematicarum, 2012, 78 (3-4): : 541 - 557
  • [8] Hardy spaces associated with different homogeneities and boundedness of composition operators
    Han, Yongsheng
    Lin, Chincheng
    Lu, Guozhen
    Ruan, Zhuoping
    Sawyer, Eric T.
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (04) : 1127 - 1157
  • [9] Lp-Boundedness of Stein's Square Functions Associated with Fourier-Bessel Expansions
    Almeida, Victor
    Betancor, Jorge J.
    Dalmasso, Estefania
    Rodriguez-Mesa, Lourdes
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [10] Boundedness of Fourier integral operators on Hardy spaces
    Peloso, Marco M.
    Secco, Silvia
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 443 - 463