Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups

被引:10
作者
Christ, Michael [1 ]
Liu, Heping [2 ]
Zhang, An [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金; 美国国家科学基金会;
关键词
Extremizers; Hardy-Littlewood-Sobolev inequalities; Quaternionic Heisenberg group; Conformal symmetry; MOSER-TRUDINGER INEQUALITIES; INTERTWINING-OPERATORS; CONSTANTS; EXISTENCE; COMPLEX; SERIES;
D O I
10.1016/j.na.2015.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we get several sharp Hardy-Littlewood-Sobolev-type inequalities on quaternionic Heisenberg groups, using the symmetrization-free method of Frank and Lieb, who considered the analogues on the Heisenberg group. First, we give the sharp Hardy-Littlewood-Sobolev inequality on the quaternionic Heisenberg group and its equivalent on the sphere, for singular exponent of partial range lambda >= 4. The extremal function, as we guess, is "almost" uniquely constant function on the sphere. Then their dual form, a sharp conformally-invariant Sobolev-type inequality involving a (fractional) intertwining operator, and the right endpoint case, a Log-Sobolev-type inequality, are also obtained. Higher dimensional center brings extra difficulty. The conformal symmetry of the inequalities, zero center-mass technique and estimates involving meticulous computation of eigenvalues of singular kernels play a critical role in the argument. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 395
页数:35
相关论文
共 45 条
[21]   Homogeneous Besov Spaces on Stratified Lie Groups and Their Wavelet Characterization [J].
Fuehr, Hartmut ;
Mayeli, Azita .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[22]   Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type [J].
Garofalo, N ;
Vassilev, D .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :411-448
[23]  
GELLER D, 1980, J DIFFER GEOM, V15, P417
[24]  
Gerard P., 1998, ESAIM CONTR OPTIM CA, V3, P213
[25]   Existence of Maximizers for Hardy-Littlewood-Sobolev Inequalities on the Heisenberg Group [J].
Han, Xiaolong .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) :737-751
[26]   Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral systems on the Heisenberg group [J].
Han, Xiaolong ;
Lu, Guozhen ;
Zhu, Jiuyi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (11) :4296-4314
[27]  
Hardy G., 1930, J. Lond. Math. Soc, V2, P34, DOI [10.1112/jlms/s1-5.1.34, DOI 10.1112/JLMS/S1-5.1.34]
[28]   Some properties of fractional integrals I [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1928, 27 :565-606
[29]  
HERSCH J, 1970, CR ACAD SCI A MATH, V270, P1645
[30]  
Ivanov S, 2012, ANN SCUOLA NORM-SCI, V11, P635