Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups

被引:10
作者
Christ, Michael [1 ]
Liu, Heping [2 ]
Zhang, An [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Extremizers; Hardy-Littlewood-Sobolev inequalities; Quaternionic Heisenberg group; Conformal symmetry; MOSER-TRUDINGER INEQUALITIES; INTERTWINING-OPERATORS; CONSTANTS; EXISTENCE; COMPLEX; SERIES;
D O I
10.1016/j.na.2015.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we get several sharp Hardy-Littlewood-Sobolev-type inequalities on quaternionic Heisenberg groups, using the symmetrization-free method of Frank and Lieb, who considered the analogues on the Heisenberg group. First, we give the sharp Hardy-Littlewood-Sobolev inequality on the quaternionic Heisenberg group and its equivalent on the sphere, for singular exponent of partial range lambda >= 4. The extremal function, as we guess, is "almost" uniquely constant function on the sphere. Then their dual form, a sharp conformally-invariant Sobolev-type inequality involving a (fractional) intertwining operator, and the right endpoint case, a Log-Sobolev-type inequality, are also obtained. Higher dimensional center brings extra difficulty. The conformal symmetry of the inequalities, zero center-mass technique and estimates involving meticulous computation of eigenvalues of singular kernels play a critical role in the argument. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 395
页数:35
相关论文
共 45 条
[1]  
[Anonymous], 1992, HDB IMPEDANCE FUNCTI
[2]  
[Anonymous], 1963, American Math. Soc. Trans.
[3]   The Cayley transform and uniformly bounded representations [J].
Astengo, F ;
Cowling, M ;
Di Blasio, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) :241-269
[4]  
Bahouri H, 2009, PROG NONLINEAR DIFFE, V78, P17, DOI 10.1007/978-0-8176-4861-9_2
[5]   Some properties of boundaries of symmetric spaces of rank one [J].
Banner, AD .
GEOMETRIAE DEDICATA, 2001, 88 (1-3) :113-133
[6]   Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere [J].
Branson, Thomas P. ;
Fontana, Luigi ;
Morpurgo, Carlo .
ANNALS OF MATHEMATICS, 2013, 177 (01) :1-52
[7]  
Capogna L., 2007, Progress in Mathematics, V259
[8]   EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES [J].
CARLEN, EA ;
LOSS, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :437-456
[9]   PRESCRIBING GAUSSIAN CURVATURE ON S2 [J].
CHANG, SYA ;
YANG, PC .
ACTA MATHEMATICA, 1987, 159 (3-4) :215-259
[10]  
Christ M., 2014, ARXIV14073419