Iterative Variance Stabilizing Transformation Denoising of Spectral Domain Optical Coherence Tomography Images Applied to Retinoblastoma

被引:4
作者
Ahmed, Soumia Sid [1 ]
Messali, Zoubeida [1 ]
Poyer, Florent [2 ,3 ]
Lumbroso-Le Rouic, Livia [4 ]
Desjardins, Laurence [4 ]
Cassoux, Nathalie [4 ,5 ]
Thomas, Carole D. [2 ,3 ]
Marco, Sergio [2 ,3 ]
Lemaitre, Stephanie [2 ,3 ,4 ,5 ]
机构
[1] Mohamed El Bachir El Ibrahimi Univ, Fac Sci & Technol, Bordj Bou Arreridj, Algeria
[2] Univ Paris Saclay, Univ Paris Sud, INSERM, U1196, Orsay, France
[3] PSL Res Univ, CNRS, Inst Curie, UMR3348, Orsay, France
[4] Claudius Regaud Hosp, Inst Curie, Ocular Oncol Dept, Paris, France
[5] Paris Descartes Univ, Paris, France
关键词
Optical coherence tomography; Mouse retina; Retinoblastoma; Variance stabilizing transformation; Iterative variance stabilizing transformation; LH Beta-Tag; REDUCTION;
D O I
10.1159/000486283
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background: Due to the presence of speckle Poisson noise, the interpretation of spectral domain-optical coherence tomography (SD-OCT) images frequently requires the use of data averaging to improve the signal-to-noise ratio. This implies long acquisition times and requires patient sedation in some cases. Iterative variance stabilizing transformation (VST) is a possible approach by which to remove speckle Poisson noise on single images. Methods: We used SD-OCT images of human and murine (LH Beta-Tag mouse model) retinas with and without retinoblastoma acquired with 2 different imaging devices (Bioptigen and Micron IV). These images were processed using a denoising workflow implemented in Matlab. Results: We demonstrated the presence of speckle Poisson noise, which can be removed by a VST-based approach. This approach is robust as it works in all used imaging devices and in both human and mouse retinas, independently of the tumor status. The implemented algorithm is freely available from the authors on demand. Conclusions: On a single denoised image, the proposed method provides results similar to those expected from the SD-OCT averaging. Because of the friendly user interface, it can be easily used by clinicians and researchers in ophthalmology. (C) 2018 S. Karger AG, Basel
引用
收藏
页码:164 / 169
页数:6
相关论文
共 14 条
  • [1] Variance Stabilization for Noisy plus Estimate Combination in Iterative Poisson Denoising
    Azzari, Lucio
    Foi, Alessandro
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (08) : 1086 - 1090
  • [2] State-of-the-art in retinal optical coherence tomography image analysis
    Baghaie, Ahmadreza
    Yu, Zeyun
    D'Souza, Roshan M.
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2015, 5 (04) : 603 - 617
  • [3] Balakrishnan N, 2013, CHISQUARED GOODNESS
  • [4] Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform
    Chitchian, Shahab
    Mayer, Markus A.
    Boretsky, Adam R.
    van Kuijk, Frederik J.
    Motamedi, Massoud
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (11)
  • [5] Image denoising algorithm based on contourlet transform for optical coherence tomography heart tube image
    Guo, Qing
    Dong, Fangmin
    Sun, Shuifa
    Lei, Bangjun
    Gao, Bruce Z.
    [J]. IET IMAGE PROCESSING, 2013, 7 (05) : 442 - 450
  • [6] Wavelet analysis enables system-independent texture analysis of optical coherence tomography images
    Lingley-Papadopoulos, Colleen A.
    Loew, Murray H.
    Zara, Jason M.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (04)
  • [7] Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions
    Liu, Chenyi
    Wong, Alexander
    Fieguth, Paul
    Bizheva, Kostadinka
    Bie, Hongxia
    [J]. BMC MEDICAL IMAGING, 2014, 14
  • [8] Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising
    Makitalo, Markku
    Foi, Alessandro
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (01) : 99 - 109
  • [9] Wavelet denoising of multiframe optical coherence tomography data
    Mayer, Markus A.
    Borsdorf, Anja
    Wagner, Martin
    Hornegger, Joachim
    Mardin, Christian Y.
    Tornow, Ralf P.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2012, 3 (03): : 572 - 589
  • [10] Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set
    Puvanathasan, Prabakar
    Bizheva, Kostadinka
    [J]. OPTICS EXPRESS, 2007, 15 (24) : 15747 - 15758