Coincidence of extendible vector-valued ideals with their minimal kernel

被引:6
|
作者
Galicer, Daniel [1 ,2 ]
Villafane, Roman [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
关键词
Multilinear mappings; Radon-Nikodym property; Polynomial ideals; Metric theory of tensor products; HOMOGENEOUS POLYNOMIALS; MULTILINEAR MAPPINGS; TENSOR-PRODUCTS; BANACH; SPACES; APPROXIMATION; NUCLEAR; BASES;
D O I
10.1016/j.jmaa.2014.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if U is an ideal of n-linear mappings we give conditions for which the equality U(E-1, . . . , E-n; F) = U-min(E-1, . . . , E-n ; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space U(E-1, . . . , E-n; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where U is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1743 / 1766
页数:24
相关论文
共 50 条
  • [21] Fundamental aspects of vector-valued Banach limits
    Garcia-Pacheco, F. J.
    Perez-Fernandez, F. J.
    IZVESTIYA MATHEMATICS, 2016, 80 (02) : 316 - 328
  • [22] FAST BILATERAL FILTERING OF VECTOR-VALUED IMAGES
    Ghosh, Sanjay
    Chaudhury, Kunal N.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1823 - 1827
  • [23] Complete latticeability in vector-valued sequence spaces
    Botelho, Geraldo
    Luiz, Jose Lucas P.
    MATHEMATISCHE NACHRICHTEN, 1600, 32 (08): : 1433-7851 - 1521-3773
  • [24] Extrapolation of vector-valued rearrangement operators II
    Mueller, Paul F. X.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 722 - 736
  • [25] Convolution of vector-valued distributions: A survey and comparison
    Bargetz, C.
    Ortner, N.
    DISSERTATIONES MATHEMATICAE, 2013, (495) : 5 - +
  • [26] INTEGRATION OF VECTOR-VALUED FUNCTIONS WITH RESPECT TO VECTOR MEASURES DEFINED ON δ-RINGS
    Chakraborty, N. D.
    Basu, Santwana
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 495 - 508
  • [27] SOME COMMENTS ON SCALAR DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS
    Naralenkov, K. M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (02) : 311 - 321
  • [28] Extremal properties of the set of vector-valued Banach limits
    Javier Garcia-Pacheco, Francisco
    OPEN MATHEMATICS, 2015, 13 : 757 - 767
  • [29] Sparse domination implies vector-valued sparse domination
    Lorist, Emiel
    Nieraeth, Zoe
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 1107 - 1141
  • [30] GENERATORS FOR MODULES OF VECTOR-VALUED PICARD MODULAR FORMS
    Clery, Fabien
    van der Geer, Gerard
    NAGOYA MATHEMATICAL JOURNAL, 2013, 212 : 19 - 57