Coincidence of extendible vector-valued ideals with their minimal kernel

被引:6
|
作者
Galicer, Daniel [1 ,2 ]
Villafane, Roman [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
关键词
Multilinear mappings; Radon-Nikodym property; Polynomial ideals; Metric theory of tensor products; HOMOGENEOUS POLYNOMIALS; MULTILINEAR MAPPINGS; TENSOR-PRODUCTS; BANACH; SPACES; APPROXIMATION; NUCLEAR; BASES;
D O I
10.1016/j.jmaa.2014.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if U is an ideal of n-linear mappings we give conditions for which the equality U(E-1, . . . , E-n; F) = U-min(E-1, . . . , E-n ; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space U(E-1, . . . , E-n; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where U is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1743 / 1766
页数:24
相关论文
共 50 条
  • [1] Kernel of Vector-Valued Toeplitz Operators
    Chevrot, Nicolas
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (01) : 57 - 78
  • [2] Vector-Valued Reproducing Kernel Hilbert C*-Modules
    Moslehian, Mohammad Sal
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (01)
  • [3] M-Structures in Vector-Valued Polynomial Spaces
    Dimant, Veronica
    Lassalle, Silvia
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (03) : 685 - 711
  • [4] IDEAL STRUCTURES IN VECTOR-VALUED POLYNOMIAL SPACES
    Dimant, Veronica
    Lassalle, Silvia
    Prieto, Angeles
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 686 - 702
  • [5] Vector-Valued John-Nirenberg Inequalities and Vector-Valued Mean Oscillations Characterization of BMO
    Ho, Kwok-Pun
    RESULTS IN MATHEMATICS, 2016, 70 (1-2) : 257 - 270
  • [6] Randomized Complexity of Vector-Valued Approximation
    Heinrich, Stefan
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 355 - 371
  • [7] On Vector-Valued Banach Function Algebras
    Mahyar, Hakimeh
    Esmaeili, Kobra
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) : 111 - 125
  • [8] On Vector-Valued Banach Function Algebras
    Hakimeh Mahyar
    Kobra Esmaeili
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 111 - 125
  • [9] Vector-valued nonstationary Gabor frames
    Lian, Qiaofang
    Song, Linlin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 358 - 377
  • [10] Vector-Valued Optimal Lipschitz Extensions
    Sheffield, Scott
    Smart, Charles K.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (01) : 128 - 154