Geometric properties of Banach spaces and the existence of nearest and farthest points

被引:30
作者
Cobzas, Stefan [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 3400, Romania
关键词
D O I
10.1155/AAA.2005.259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present some generic existence results for nearest and farthest points in connection with some geometric properties of Banach spaces.
引用
收藏
页码:259 / 285
页数:27
相关论文
共 85 条
[1]  
[Anonymous], RES NOTES MATH
[2]  
[Anonymous], 1933, STUD MATH, DOI DOI 10.4064/SM-4-1-128-133
[3]  
[Anonymous], 1964, REV ROUM MATH PURES
[4]  
[Anonymous], PLISKA STUD MATH BUL
[5]  
[Anonymous], 1997, MATH ITS APPL
[6]   FARTHEST POINTS IN REFLEXIVE LOCALLY UNIFORMLY ROTUND BANACH SPACES [J].
ASPLUND, E .
ISRAEL JOURNAL OF MATHEMATICS, 1966, 4 (04) :213-&
[7]   FRECHET DIFFERENTIABILITY OF CONVEX FUNCTIONS [J].
ASPLUND, E .
ACTA MATHEMATICA UPPSALA, 1968, 121 (1-2) :31-&
[8]  
BALAGANSKII VS, 1996, USP MAT NAUK, V51, P125, DOI 10.4213/rm1020
[9]  
BANDYOPADHYAY P, 1994, MAZUR INTERSECTION P
[10]  
BERNAU SJ, 1969, J AUST MATH SOC, V9, P25