Poisson suspensions and infinite ergodic theory

被引:31
|
作者
Roy, Emmanuel [1 ]
机构
[1] Univ Paris 13, Lab Anal Geometrie & Applicat, UMR 7539, F-93430 Villetaneuse, France
关键词
TRANSFORMATIONS; AUTOMORPHISMS;
D O I
10.1017/S0143385708080279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure-preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite-measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaussian dynamical systems.
引用
收藏
页码:667 / 683
页数:17
相关论文
共 21 条
  • [1] From infinite ergodic theory to number theory (and possibly back)
    Isola, Stefano
    CHAOS SOLITONS & FRACTALS, 2011, 44 (07) : 467 - 479
  • [2] Infinite Ergodic Theory and Non-extensive Entropies
    Gaggero-Sager, Luis M.
    Pujals, E. R.
    Sotolongo-Costa, O.
    BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) : 297 - 303
  • [3] Exponential chi-squared distributions in infinite ergodic theory
    Aaronson, Jon
    Sarig, Omri
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 705 - 724
  • [4] Prime Poisson suspensions
    Parreau, Francois
    Roy, Emmanuel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 2216 - 2230
  • [5] INFINITE MEASURE PRESERVING FLOWS WITH INFINITE ERGODIC INDEX
    Danilenko, Alexandre I.
    Solomko, Anton V.
    COLLOQUIUM MATHEMATICUM, 2009, 115 (01) : 13 - 19
  • [6] Infinite ergodic theory for three heterogeneous stochastic models with application to subrecoil laser cooling
    Akimoto, Takuma
    Barkai, Eli
    Radons, Guenter
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [7] Ergodic theorem, ergodic theory, and statistical mechanics
    Moore, Calvin C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (07) : 1907 - 1911
  • [8] INFINITE TYPE FLAT SURFACE MODELS OF ERGODIC SYSTEMS
    Lindsey, Kathryn
    Trevino, Rodrigo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5509 - 5553
  • [9] The conjugacy problem in ergodic theory
    Foreman, Matthew
    Rudolph, Daniel J.
    Weiss, Benjamin
    ANNALS OF MATHEMATICS, 2011, 173 (03) : 1529 - 1586
  • [10] Ergodic theory for quantum semigroups
    Runde, Volker
    Viselter, Ami
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 941 - 959