Implementation of quantum gates via optimal control

被引:23
作者
Schirmer, Sonia [1 ,2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Kuopio, Dept Math & Stat, FIN-70211 Kuopio, Finland
基金
英国工程与自然科学研究理事会;
关键词
quantum control theory; quantum computation; physically-realistic control system models; implementation of quantum gates;
D O I
10.1080/09500340802344933
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Starting with the basic control system model often employed in nuclear magnetic resonance pulse design, we derive more realistic control system models taking into account effects such as off-resonant excitation for systems with fixed inter-qubit coupling controlled by globally applied electromagnetic fields, as well as for systems controlled by a combination of a global fields and local control electrodes. For both models optimal control is used to find controls that implement a set of two- and three-qubit gates with fidelity of at least 99.99%.
引用
收藏
页码:831 / 839
页数:9
相关论文
共 15 条
[1]  
Boltyanskiy VG, 1962, Mathematical theory of optimal processes, P9
[2]   A constructive algorithm for the Cartan decomposition of SU(2N) -: art. no. 082108 [J].
Earp, HNS ;
Pachos, JK .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
[3]   Global control and fast solid-state donor electron spin quantum computing [J].
Hill, CD ;
Hollenberg, LCL ;
Fowler, AG ;
Wellard, CJ ;
Greentree, AD ;
Goan, HS .
PHYSICAL REVIEW B, 2005, 72 (04)
[4]   Cross-talk compensation of hyperfine control in donor-qubit architectures [J].
Kandasamy, G. ;
Wellard, C. J. ;
Hollenberg, L. C. L. .
NANOTECHNOLOGY, 2006, 17 (18) :4572-4580
[5]   A silicon-based nuclear spin quantum computer [J].
Kane, BE .
NATURE, 1998, 393 (6681) :133-137
[6]   Optimal control of coupled spin dynamics:: design of NMR pulse sequences by gradient ascent algorithms [J].
Khaneja, N ;
Reiss, T ;
Kehlet, C ;
Schulte-Herbrüggen, T ;
Glaser, SJ .
JOURNAL OF MAGNETIC RESONANCE, 2005, 172 (02) :296-305
[7]   Cartan decomposition of SU(2n) and control of spin systems [J].
Khaneja, N ;
Glaser, SJ .
CHEMICAL PHYSICS, 2001, 267 (1-3) :11-23
[8]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[9]  
Nielsen M., 2000, Quantum Computing and Quantum Information
[10]   Control of a coupled two-spin system without hard pulses [J].
Ramakrishna, V ;
Ober, RJ ;
Flores, KL ;
Rabitz, H .
PHYSICAL REVIEW A, 2002, 65 (06) :634051-634059