Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance

被引:12
作者
Liu, Kang [1 ]
Zhao, Jiwen [2 ]
Sun, Huarui [1 ]
Guo, Huaixin [3 ]
Dai, Bing [2 ]
Zhu, Jiaqi [2 ]
机构
[1] Harbin Inst Technol, Key Lab Micronano Optoelect Informat Syst, Minist Ind & Informat Technol, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Heilongjiang, Peoples R China
[3] Nanjing Elect Devices Inst, Sci & Technol Monolith Integrated Circuits & Modu, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GaN heteroepitaxy; thermal conductivity; transient thermoreflectance; ultraviolet laser; CONDUCTIVITY;
D O I
10.1088/1674-1056/28/6/060701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet (UV) lasers are employed to directly heat and sense the GaN epilayers in the transient thermoreflectance (TTR) measurement, obtaining important thermal transport properties in different GaN heterostructures, which include a diamond thin film heat spreader grown on GaN. The UV TTR technique enables rapid and non-contact thermal characterization for GaN wafers.
引用
收藏
页数:5
相关论文
共 25 条
[11]   Thermal conduction in AlxGa1-xN alloys and thin films -: art. no. 073710 [J].
Liu, WL ;
Balandin, AA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (07)
[12]   Temperature dependence of thermal conductivity of AlxGa1-xN thin films measured by the differential 3ω technique [J].
Liu, WL ;
Balandin, AA .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5230-5232
[13]   Large-Signal RF Performance of Nanocrystalline Diamond Coated AlGaN/GaN High Electron Mobility Transistors [J].
Meyer, David J. ;
Feygelson, Tatyana I. ;
Anderson, Travis J. ;
Roussos, Jason A. ;
Tadjer, Marko J. ;
Downey, Brian P. ;
Katzer, D. Scott ;
Pate, Bradford B. ;
Ancona, Mario G. ;
Koehler, Andrew D. ;
Hobart, Karl D. ;
Eddy, Charles R., Jr. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (10) :1013-1015
[14]   Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements [J].
Muth, JF ;
Lee, JH ;
Shmagin, IK ;
Kolbas, RM ;
Casey, HC ;
Keller, BP ;
Mishra, UK ;
DenBaars, SP .
APPLIED PHYSICS LETTERS, 1997, 71 (18) :2572-2574
[15]   Self-Heating Profile in an AlGaN/GaN Heterojunction Field-Effect Transistor Studied by Ultraviolet and Visible Micro-Raman Spectroscopy [J].
Nazari, Mohammad ;
Hancock, Bobby Logan ;
Piner, Edwin L. ;
Holtz, Mark W. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (05) :1467-1472
[16]   Contactless Thermal Boundary Resistance Measurement of GaN-on-Diamond Wafers [J].
Pomeroy, James W. ;
Simon, Roland Baranyai ;
Sun, Huarui ;
Francis, Daniel ;
Faili, Firooz ;
Twitchen, Daniel J. ;
Kuball, Martin .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (10) :1007-1009
[17]   Luminescence properties of defects in GaN -: art. no. 061301 [J].
Reshchikov, MA ;
Morkoç, H .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[18]   Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond [J].
Sood, Aditya ;
Cho, Jungwan ;
Hobart, Karl D. ;
Feygelson, Tatyana I. ;
Pate, Bradford B. ;
Asheghi, Mehdi ;
Cahill, David G. ;
Goodson, Kenneth E. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (17)
[19]   Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers [J].
Sun, Huarui ;
Pomeroy, James W. ;
Simon, Roland B. ;
Francis, Daniel ;
Faili, Firooz ;
Twitchen, Daniel J. ;
Kuball, Martin .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) :621-624
[20]   Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications [J].
Sun, Huarui ;
Simon, Roland B. ;
Pomeroy, James W. ;
Francis, Daniel ;
Faili, Firooz ;
Twitchen, Daniel J. ;
Kuball, Martin .
APPLIED PHYSICS LETTERS, 2015, 106 (11)