Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance

被引:12
作者
Liu, Kang [1 ]
Zhao, Jiwen [2 ]
Sun, Huarui [1 ]
Guo, Huaixin [3 ]
Dai, Bing [2 ]
Zhu, Jiaqi [2 ]
机构
[1] Harbin Inst Technol, Key Lab Micronano Optoelect Informat Syst, Minist Ind & Informat Technol, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Heilongjiang, Peoples R China
[3] Nanjing Elect Devices Inst, Sci & Technol Monolith Integrated Circuits & Modu, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GaN heteroepitaxy; thermal conductivity; transient thermoreflectance; ultraviolet laser; CONDUCTIVITY;
D O I
10.1088/1674-1056/28/6/060701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet (UV) lasers are employed to directly heat and sense the GaN epilayers in the transient thermoreflectance (TTR) measurement, obtaining important thermal transport properties in different GaN heterostructures, which include a diamond thin film heat spreader grown on GaN. The UV TTR technique enables rapid and non-contact thermal characterization for GaN wafers.
引用
收藏
页数:5
相关论文
共 25 条
[1]  
Agonafer D., 2017, IEEE T COMPON PACKAG, V5, P737
[2]   Thermal conductivity of free-standing CVD diamond films by growing on both nuclear and growth sides [J].
Dai, Bing ;
Zhao, Jiwen ;
Ralchenko, Victor ;
Khomich, Andrey ;
Popovich, Alexey ;
Liu, Kang ;
Shu, Guoyang ;
Gao, Ge ;
Sun Mingqi ;
Yang, Lei ;
Lei, Pei ;
Han, Jiecai ;
Zhu, Jiaqi .
DIAMOND AND RELATED MATERIALS, 2017, 76 :9-13
[3]   CCD-based thermoreflectance microscopy: principles and applications [J].
Farzaneh, M. ;
Maize, K. ;
Luerssen, D. ;
Summers, J. A. ;
Mayer, P. M. ;
Raad, P. E. ;
Pipe, K. P. ;
Shakouri, A. ;
Ram, R. J. ;
Hudgings, Janice A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (14)
[4]   Ultraviolet micro-Raman spectroscopy stress mapping of a 75-mm GaN-on-diamond wafer [J].
Hancock, B. L. ;
Nazari, M. ;
Anderson, J. ;
Piner, E. ;
Faili, F. ;
Oh, S. ;
Twitchen, D. ;
Graham, S. ;
Holtz, M. .
APPLIED PHYSICS LETTERS, 2016, 108 (21)
[5]   A TRANSMISSION-LINE THEORY FOR HEAT-CONDUCTION IN MULTILAYER THIN-FILMS [J].
HUI, P ;
TAN, HS .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART B-ADVANCED PACKAGING, 1994, 17 (03) :426-434
[6]   THERMAL CONDUCTION IN METALLIZED SILICON-DIOXIDE LAYERS ON SILICON [J].
KADING, OW ;
SKURK, H ;
GOODSON, KE .
APPLIED PHYSICS LETTERS, 1994, 65 (13) :1629-1631
[7]   Optical properties of hexagonal GaN [J].
Kawashima, T ;
Yoshikawa, H ;
Adachi, S ;
Fuke, S ;
Ohtsuka, K .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (07) :3528-3535
[8]   Correlation of the Spatial Variation of Single-Event Transient Sensitivity With Thermoreflectance Thermography in AlxGa1-xN/GaN HEMTs [J].
Khachatrian, A. ;
Roche, N. J. -H. ;
Ruppalt, L. B. ;
Champlain, J. G. ;
Buchner, S. ;
Koehler, A. D. ;
Anderson, T. J. ;
Hobart, K. D. ;
Warner, J. H. ;
McMorrow, D. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (01) :369-375
[9]   A Review of Raman Thermography for Electronic and Opto-Electronic Device Measurement With Submicron Spatial and Nanosecond Temporal Resolution [J].
Kuball, Martin ;
Pomeroy, James W. .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2016, 16 (04) :667-684
[10]   Development of Time-resolved UV Micro-Raman Spectroscopy to measure temperature in AlGaN/GaN HEMTs [J].
Lancry, O. ;
Pichonat, E. ;
Rehault, J. ;
Moreau, M. ;
Aubry, R. ;
Gaquiere, C. .
SOLID-STATE ELECTRONICS, 2010, 54 (11) :1434-1437