On Objects with a Semilocal Endomorphism Rings in Finitely Accessible Additive Categories

被引:4
作者
Berktas, Mustafa Kemal [1 ]
机构
[1] Usak Univ, Usak, Turkey
关键词
Accessible categories; Grothendieck categories; Camps-Dicks theorem; Pure Goldie dimension; MODULES;
D O I
10.1007/s10468-015-9545-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that if A is an object in a finitely accessible additive category A such that A has finite pure Goldie dimension and that every pure monomorphism A -> A is an isomorphism, then its endomorphism ring End(A)(A) is semilocal.
引用
收藏
页码:1389 / 1393
页数:5
相关论文
共 12 条
[1]  
Adamek J., 1994, LOCALLY PRESENTABLE
[2]   Left cotorsion rings [J].
Asensio, PAG ;
Herzog, I .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :303-309
[3]  
Berktas MK, 2012, JP J ALGEBR NUMBER T, V25, P113
[4]   A Uniqueness Theorem in a Finitely Accessible Additive Category [J].
Berktas, Mustafa Kemal .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) :1009-1012
[5]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[6]   LOCALLY FINITELY PRESENTED ADDITIVE CATEGORIES [J].
CRAWLEYBOEVEY, W .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) :1641-1674
[7]  
Facchini A., 2013, MODULE THEORY ENDOMO, V167
[8]   Local morphisms and modules with a semilocal endomorphism ring [J].
Facchini, Alberto ;
Herbera, Dolors .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (04) :403-422
[9]   Modules with semi-local endomorphism ring [J].
Herbera, D ;
Shamsuddin, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3593-3600
[10]   PURE-INJECTIVE ENVELOPES [J].
Herzog, Ivo .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2003, 2 (04) :397-402