Continued g-Fractions and Geometry of Bounded Analytic Maps

被引:0
作者
Tsygvintsev, Alexei [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon 07, France
关键词
Continued fractions; Real analytic functions; Dynamical systems;
D O I
10.1007/s10883-013-9200-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we study qualitative properties of real analytic bounded maps. The main tool is approximation of real-valued functions analytic in rectangular domains of the complex plane by continued g-fractions of Wall (1948). As an application, the Sundman-Poincar method in the Newtonian three-body problem is revisited and applications to collision detection problem are considered.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 8 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Akhiezer N. I., 1990, ELEMENTS THEORY ELLI
[3]  
[Anonymous], 1948, ANAL THEORY CONTINUE
[4]   Bounds on the unstable eigenvalue for the asymmetric renormalization operator for period doubling [J].
Mestel, BD ;
Osbaldestin, AH ;
Tsygvintsev, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (02) :241-257
[5]  
Sundman K. F., 1912, ACTA MATHEMATICA, V36, P105, DOI DOI 10.1007/BF02422379
[6]  
Tsygvintsev A, 2003, COMMUN ANAL THEORY C, VXI, P103
[7]   On the convergence of continued fractions at Runckel's points [J].
Tsygvintsev, A. V. .
RAMANUJAN JOURNAL, 2008, 15 (03) :407-413
[8]   Continued fractions and solutions of the Feigenbaum-Cvitanovic equation [J].
Tsygvintsev, AV ;
Mestel, BD ;
Osbaldestin, AH .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (08) :683-688