UMBRAL CALCULUS ASSOCIATED WITH NEW DEGENERATE BERNOULLI POLYNOMIALS

被引:0
作者
Kim, Dae San [1 ]
Kim, Taekyun [2 ]
Seo, Jong-Jin [3 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[3] Pukyong Natl Univ, Dept Appl Math, Busan 48513, South Korea
关键词
Degenerate Bernoulli polynomial; Higher-order degenerate Bernoulli polynomial; Umbral calculus;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce new degenerate Bernoulli polynomials which are derived from umbral calculus and investigate some interesting properties of those polynomials.
引用
收藏
页码:831 / 840
页数:10
相关论文
共 50 条
[41]   On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus (III): Blossoming [J].
Winkel, Rudolf .
COMPUTER AIDED GEOMETRIC DESIGN, 2016, 46 :43-63
[42]   Representations by degenerate Bernoulli polynomials arising from Volkenborn integral [J].
Kim, Dae San ;
Kim, Taekyun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) :6615-6634
[43]   THE CLASSICAL UMBRAL CALCULUS [J].
ROTA, GC ;
TAYLOR, BD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (02) :694-711
[44]   Symmetric q-extension of λ-Apostol-Euler polynomials via umbral calculus [J].
Elmonser, Hedi .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02) :583-594
[45]   Umbral orthogonal polynomials [J].
Lopez-Sendino, J. E. ;
del Olmo, M. A. .
SYMMETRIES IN NATURE, 2010, 1323 :52-61
[46]   Umbral calculus and invariant sequences [J].
Fang, Qin ;
Wang, Tianming .
ARS COMBINATORIA, 2011, 101 :257-264
[47]   Congruences via umbral calculus [J].
Benyattou, Abdelkader .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) :719-729
[48]   Baxter algebras and the umbral calculus [J].
Guo, L .
ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) :405-426
[49]   Umbral calculus in Ore extensions [J].
Benouaret, Chahrazed ;
Salinier, Alain .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (03) :958-986
[50]   On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus (II): de Casteljau algorithm [J].
Winkel, Rudolf .
COMPUTER AIDED GEOMETRIC DESIGN, 2015, 39 :1-16