Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide

被引:35
作者
Han, Na [1 ]
Liu, Chao [1 ]
Zhao, Zhiyong [1 ]
Zhang, Jihong [1 ]
Xie, Jun [1 ]
Han, Jianjun [1 ]
Zhao, Xiujian [1 ]
Jiang, Yang [2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[2] China Bldg Mat Inst Solar Energy Applicat, Zhenjiang 212009, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
PBS NANOCRYSTALS; OPTICAL GAIN; PHOTOLUMINESCENCE; LUMINESCENCE; EMISSION; EXCHANGE; STATES;
D O I
10.1111/ijag.12138
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Size-dependent Stokes shift of PbS quantum dots (QDs) formed in the glasses was investigated. PbS QDs with diameters of 3.5 nm to 13.3 nm were precipitated in silicate glasses with different S/Pb ratios using the conventional thermal treatment method. Absorption and photoluminescence (PL) of PbS QDs were tuned from similar to 0.9 mu m (1.38 eV) to similar to 2.3 mu m (0.54 eV) by adjusting the diameters of PbS QDs from 3.5 nm to 13.3 nm. PL energies of QDs exhibited linear dependence on the absorption energies with a slope of 0.484 for PbS QDs with band gap energies larger than 0.98 eV, and the maximum Stokes shift was found to be 206.2 meV for 3.5 nm-sized PbS QDs. For large PbS QDs with band gap energies smaller than 0.98 eV, Stokes shift was found to be similar to 20 meV or smaller. The size-dependent Stokes shift indicated that surface defects made the main contribution and relative energy positions of these surface defects were strongly dependent on the size of PbS QDs.
引用
收藏
页码:339 / 344
页数:6
相关论文
共 25 条
[1]   The excitonic exchange splitting and radiative lifetime in PbSe quantum dots [J].
An, J. M. ;
Franceschetti, A. ;
Zunger, A. .
NANO LETTERS, 2007, 7 (07) :2129-2135
[2]   Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer [J].
Bakueva, L ;
Musikhin, S ;
Hines, MA ;
Chang, TWF ;
Tzolov, M ;
Scholes, GD ;
Sargent, EH .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2895-2897
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Radiative versus nonradiative optical processes in PbS nanocrystals [J].
Dantas, N. O. ;
de Paula, P. M. N. ;
Silva, R. S. ;
Lopez-Richard, V. ;
Marques, G. E. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (02)
[5]   Evidence for a "dark exciton" state of PbS nanocrystals in a silicate glass [J].
De Lamaëstre, RE ;
Bernas, H ;
Pacifici, D ;
Franzo, G ;
Priolo, F .
APPLIED PHYSICS LETTERS, 2006, 88 (18)
[6]   Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J].
Ellingson, RJ ;
Beard, MC ;
Johnson, JC ;
Yu, PR ;
Micic, OI ;
Nozik, AJ ;
Shabaev, A ;
Efros, AL .
NANO LETTERS, 2005, 5 (05) :865-871
[7]   Highly efficient luminescence from a hybrid state found in strongly quantum confined PbS nanocrystals [J].
Fernée, MJ ;
Thomsen, E ;
Jensen, P ;
Rubinsztein-Dunlop, H .
NANOTECHNOLOGY, 2006, 17 (04) :956-962
[8]   Inorganic surface passivation of PbS nanocrystals resulting in strong photoluminescent emission [J].
Fernée, MJ ;
Watt, A ;
Warner, J ;
Cooper, S ;
Heckenberg, N ;
Rubinsztein-Dunlop, H .
NANOTECHNOLOGY, 2003, 14 (09) :991-997
[9]   Colloidal PbS nanocrystals with narrow photoluminescence spectra [J].
Ghamsari, M. Sasani ;
Radiman, S. ;
Yarmo, M. Ambar ;
Abdul-Hamid, M. A. ;
Bananej, A. ;
Rahman, I. Abdul .
MATERIALS LETTERS, 2011, 65 (09) :1381-1384
[10]   Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur [J].
Han, Na ;
Liu, Chao ;
Zhang, Jihong ;
Zhao, Xiujian ;
Heo, Jong ;
Jiang, Yang .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2014, 391 :39-42