On colored HOMFLY polynomials for twist knots

被引:31
作者
Mironov, Andrei [1 ,2 ,3 ]
Morozov, Alexei [2 ,3 ]
Morozov, Andrey [2 ,3 ,4 ,5 ]
机构
[1] PN Lebedev Phys Inst, Moscow 119991, Russia
[2] ITEP, Moscow 117218, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[4] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[5] Chelyabinsk State Univ, Lab Quantum Topol, Chelyabinsk 454001, Russia
关键词
Chern-Simons theory; colored HOMFLY polynomials; CHERN-SIMONS THEORY; DIFFERENTIAL HIERARCHY; GENUS EXPANSION; FIELD-THEORY; INVARIANTS; OPERATORS; ALGEBRA;
D O I
10.1142/S0217732314501831
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent results of Gu and Jockers provide the lacking initial conditions for the evolution method in the case of the first nontrivially colored HOMFLY polynomials H[ 21] for the family of twist knots. We describe this application of the evolution method, which finally allows one to penetrate through the wall between (anti) symmetric and non-rectangular representations for a whole family. We reveal the necessary deformation of the differential expansion, what, together with the recently suggested matrix model approach gives new opportunities to guess what it could be for a generic representation, at least for the family of twist knots.
引用
收藏
页数:11
相关论文
共 81 条
[1]  
AGANAGIC M, ARXIV11055117
[2]   On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture [J].
Alba, Vasyl A. ;
Fateev, Vladimir A. ;
Litvinov, Alexey V. ;
Tarnopolskiy, Grigory M. .
LETTERS IN MATHEMATICAL PHYSICS, 2011, 98 (01) :33-64
[3]   Liouville Correlation Functions from Four-Dimensional Gauge Theories [J].
Alday, Luis F. ;
Gaiotto, Davide ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) :167-197
[4]   Integrability of Hurwitz partition functions [J].
Alexandrov, A. ;
Mironov, A. ;
Morozov, A. ;
Natanzon, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (04)
[5]   Towards R-matrix construction of Khovanov-Rozansky polynomials I. Primary T-deformation of HOMFLY [J].
Anokhina, A. ;
Morozov, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[6]   Knot polynomials in the first non-symmetric representation [J].
Anokhina, A. ;
Mironov, A. ;
Morozov, A. ;
Morozov, And. .
NUCLEAR PHYSICS B, 2014, 882 :171-194
[7]   Colored HOMFLY Polynomials as Multiple Sums over Paths or Standard Young Tableaux [J].
Anokhina, A. ;
Mironov, A. ;
Morozov, A. ;
Morozov, And .
ADVANCES IN HIGH ENERGY PHYSICS, 2013, 2013
[8]   Cabling procedure for the colored HOMFLY polynomials [J].
Anokhina, A. S. ;
Morozov, A. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 178 (01) :1-58
[9]  
[Anonymous], 2002, ALGEBR GEOM TOPOL, DOI [DOI 10.2140/AGT.2002.2.11, 10.2140/agt.2002.2.11]
[10]  
[Anonymous], ARXIV13043481