Spin crossover composite materials for electrothermomechanical actuators

被引:80
作者
Gural'skiy, Il'ya A. [1 ,2 ,3 ]
Quintero, Carlos M. [4 ,5 ]
Costa, Jose Sanchez [1 ,2 ]
Demont, Philippe [6 ,7 ]
Molnar, Gabor [1 ,2 ]
Salmon, Lionel [1 ,2 ]
Shepherd, Helena J. [8 ]
Bousseksou, Azzedine [1 ,2 ]
机构
[1] CNRS, LCC, F-31077 Toulouse, France
[2] Univ Toulouse UPS, INPT, F-31077 Toulouse, France
[3] Taras Shevchenko Natl Univ Kyiv, Dept Chem, UA-01601 Kiev, Ukraine
[4] CNRS, LAAS, F-31077 Toulouse, France
[5] Univ Toulouse UPS, INSA, IAES, F-31077 Toulouse, France
[6] CNRS, Inst Carnot CIRIMAT, F-31062 Toulouse, France
[7] Univ Toulouse 3, F-31062 Toulouse, France
[8] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
关键词
THERMAL HYSTERESIS; ROOM-TEMPERATURE; TRANSITION; COMPLEX;
D O I
10.1039/c4tc00267a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Composites of the spin crossover complex [Fe(trz)(H-trz)(2)](BF4) (H-trz = 1,2,4-4H-triazole and trz = 1,2,4-triazolato) dispersed in a poly(methylmethacrylate) (PMMA) matrix were synthesized and investigated for their spin crossover properties by optical reflectivity, Raman spectroscopy and calorimetry. These composite films were used to fabricate bilayer cantilevers that can perform efficient and tuneable mechanical actuation based on the spin transition. A prototype device that uses the spin transition phenomenon to convert electrical energy into mechanical motion through Joule heating is described. This device is used to perform oscillatory actuation driven by a modulated current. The ability to tune the performance of this electromechanical system is demonstrated by varying the working temperature, the applied ac current and its frequency.
引用
收藏
页码:2949 / 2955
页数:7
相关论文
共 31 条
[1]  
Bao M., 2005, Analysis and Design Principles of MEMS Devices, P1, DOI [10.1016/b978-044451616-9/50002-3, DOI 10.1016/B978-044451616-9/50002-3]
[2]   Guest Effect on Nanopatterned Spin-Crossover Thin Films [J].
Bartual-Murgui, Carlos ;
Akou, Amal ;
Salmon, Lionel ;
Molnar, Gabor ;
Thibault, Christophe ;
Antonio Real, Jose ;
Bousseksou, Azzedine .
SMALL, 2011, 7 (23) :3385-3391
[3]   Ligand-Driven Light-Induced Spin Change Activity and Bidirectional Photomagnetism of Styrylpyridine Iron(II) Complexes in Polymeric Media [J].
Boillot, M. -L. ;
Pillet, S. ;
Tissot, A. ;
Riviere, E. ;
Claiser, N. ;
Lecomte, C. .
INORGANIC CHEMISTRY, 2009, 48 (11) :4729-4736
[4]   Molecular spin crossover phenomenon: recent achievements and prospects [J].
Bousseksou, Azzedine ;
Molnar, Gabor ;
Salmon, Lionel ;
Nicolazzi, William .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (06) :3313-3335
[5]   Dynamics of photothermally driven VO2-coated microcantilevers [J].
Cabrera, Rafmag ;
Merced, Emmanuelle ;
Sepulveda, Nelson ;
Fernandez, Felix E. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (09)
[6]   Colossal thermal-mechanical actuation via phase transition in single-crystal VO2 microcantilevers [J].
Cao, Jinbo ;
Fan, Wen ;
Zhou, Qin ;
Sheu, Erica ;
Liu, Aiwen ;
Barrett, C. ;
Wu, J. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
[7]   Single-laser-shot-induced complete bidirectional spin transition at room temperature in single crystals of (FeII(pyrazine)(Pt(CN)4)) [J].
Cobo, Saioa ;
Ostrovskii, Denis ;
Bonhommeau, Sebastien ;
Vendier, Laure ;
Molnar, Gabor ;
Salmon, Lionel ;
Tanaka, Koichiro ;
Bousseksou, Azzedine .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (28) :9019-9024
[8]   Room temperature bistability with wide thermal hysteresis in a spin crossover silica nanocomposite [J].
Durand, Pierrick ;
Pillet, Sebastien ;
Bendeif, El-Eulmi ;
Carteret, Cedric ;
Bouazaoui, Mohamed ;
El Hamzaoui, Hicham ;
Capoen, Bruno ;
Salmon, Lionel ;
Hebert, Sylvie ;
Ghanbaja, Jaafar ;
Aranda, Lionel ;
Schaniel, Dominik .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (10) :1933-1942
[9]   A facile route for the preparation of nanoparticles of the spin-crossover complex [Fe(Htrz)2(trz)](BF4) in xerogel transparent composite films [J].
Faulmann, Christophe ;
Chahine, Joe ;
Malfant, Isabelle ;
de Caro, Dominique ;
Cormary, Benoit ;
Valade, Lydie .
DALTON TRANSACTIONS, 2011, 40 (11) :2480-2485
[10]  
Ghodssi R., 2011, MEMS Materials and Processes Handbook, V1