The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary

被引:606
作者
Ros-Oton, Xavier [1 ]
Serra, Joaquim [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 03期
关键词
Fractional Laplacian; Dirichlet problem; Boundary regularity;
D O I
10.1016/j.matpur.2013.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if u is a solution of (-Delta)(s)u = g in Omega, u equivalent to 0 in R-n\Omega, for some s is an element of (0, 1) and g is an element of L-infinity (Omega), then u is C-s (R-n) and u/delta(s)/Omega is C-alpha up to the boundary partial derivative Omega for some a is an element of (0, 1), where delta(x) = dist(x, partial derivative Omega). For this, we develop a fractional analog of the Krylov boundary Hamack method. Moreover, under further regularity assumptions on g we obtain higher order Holder estimates for u and u/delta(s). Namely, the C-beta norms of u and u/delta(s) in the sets {x is an element of Omega: delta(x) >= rho} are controlled by C rho(s-beta) and C rho(alpha-beta), respectively. These regularity results are crucial tools in our proof of the Pohozaev identity for the fractional Laplacian (Ros-Oton and Serra, 2012 [19,20]). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
[41]   DISCRETIZATIONS OF THE SPECTRAL FRACTIONAL LAPLACIAN ON GENERAL DOMAINS WITH DIRICHLET, NEUMANN, AND ROBIN BOUNDARY CONDITIONS [J].
Cusimano, Nicole ;
del Tesoz, Felix ;
Gerardo-Giorda, Luca ;
Pagnini, Gianni .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) :1243-1272
[42]   Three solutions for a Dirichlet boundary value problem involving the p-Laplacian [J].
Afrouzi, G. A. ;
Heidarkhani, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) :2281-2288
[43]   A semilnear singular problem for the fractional laplacian [J].
Godoy, Tomas .
AIMS MATHEMATICS, 2018, 3 (04) :464-484
[44]   A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian [J].
Acosta, Gabriel ;
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) :784-816
[45]   Heat kernel estimates for the Dirichlet fractional Laplacian [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1307-1329
[46]   SHARPER ESTIMATES ON THE EIGENVALUES OF DIRICHLET FRACTIONAL LAPLACIAN [J].
Yolcu, Selma Yildirim ;
Yolcu, Tuerkay .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) :2209-2225
[47]   On the Dirichlet problem associated with the Dunkl Laplacian [J].
Ben Chrouda, Mohamed .
ANNALES POLONICI MATHEMATICI, 2016, 117 (01) :79-87
[48]   Improvement of Besov Regularity for Solutions of the Fractional Laplacian [J].
Aimar, Hugo ;
Beltritti, Gaston ;
Gomez, Ivana .
CONSTRUCTIVE APPROXIMATION, 2015, 41 (02) :219-229
[49]   Improvement of Besov Regularity for Solutions of the Fractional Laplacian [J].
Hugo Aimar ;
Gastón Beltritti ;
Ivana Gómez .
Constructive Approximation, 2015, 41 :219-229
[50]   BOUNDARY ESTIMATES AND A WIENER CRITERION FOR THE FRACTIONAL LAPLACIAN [J].
Bjorn, Jana .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) :1053-1065