The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary

被引:606
作者
Ros-Oton, Xavier [1 ]
Serra, Joaquim [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 03期
关键词
Fractional Laplacian; Dirichlet problem; Boundary regularity;
D O I
10.1016/j.matpur.2013.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if u is a solution of (-Delta)(s)u = g in Omega, u equivalent to 0 in R-n\Omega, for some s is an element of (0, 1) and g is an element of L-infinity (Omega), then u is C-s (R-n) and u/delta(s)/Omega is C-alpha up to the boundary partial derivative Omega for some a is an element of (0, 1), where delta(x) = dist(x, partial derivative Omega). For this, we develop a fractional analog of the Krylov boundary Hamack method. Moreover, under further regularity assumptions on g we obtain higher order Holder estimates for u and u/delta(s). Namely, the C-beta norms of u and u/delta(s) in the sets {x is an element of Omega: delta(x) >= rho} are controlled by C rho(s-beta) and C rho(alpha-beta), respectively. These regularity results are crucial tools in our proof of the Pohozaev identity for the fractional Laplacian (Ros-Oton and Serra, 2012 [19,20]). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
[31]   Fractional variable exponents Sobolev trace spaces and Dirichlet problem for the regional fractional p(.) -Laplacian [J].
Berghout, Mohamed .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) :565-594
[32]   NONEXITENCE OF NONTRIVIAL SOLUTIONS TO DIRICHLET PROBLEMS FOR THE FRACTIONAL LAPLACIAN [J].
Carmona, Jose ;
Molino, A. L. E. X. I. S. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (16) :1-10
[33]   HEAT KERNEL ESTIMATES FOR THE FRACTIONAL LAPLACIAN WITH DIRICHLET CONDITIONS [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Michal .
ANNALS OF PROBABILITY, 2010, 38 (05) :1901-1923
[34]   Regularity for the fractional Gelfand problem up to dimension 7 [J].
Ros-Oton, Xavier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) :10-19
[35]   The Dirichlet problem for the logarithmic Laplacian [J].
Chen, Huyuan ;
Weth, Tobias .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (11) :1100-1139
[36]   Regularity for the Supercritical Fractional Laplacian with Drift [J].
Epstein, Charles L. ;
Pop, Camelia A. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) :1231-1268
[37]   REGULARITY OF NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIAN [J].
Xia, Aliang ;
Yang, Jianfu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) :2665-2672
[38]   Regularity for the Supercritical Fractional Laplacian with Drift [J].
Charles L. Epstein ;
Camelia A. Pop .
The Journal of Geometric Analysis, 2016, 26 :1231-1268
[39]   Boundary regularity for the fractional heat equation [J].
Fernandez-Real, Xavier ;
Ros-Oton, Xavier .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) :49-64
[40]   Boundary regularity for the fractional heat equation [J].
Xavier Fernández-Real ;
Xavier Ros-Oton .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 :49-64