The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary

被引:606
作者
Ros-Oton, Xavier [1 ]
Serra, Joaquim [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 03期
关键词
Fractional Laplacian; Dirichlet problem; Boundary regularity;
D O I
10.1016/j.matpur.2013.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if u is a solution of (-Delta)(s)u = g in Omega, u equivalent to 0 in R-n\Omega, for some s is an element of (0, 1) and g is an element of L-infinity (Omega), then u is C-s (R-n) and u/delta(s)/Omega is C-alpha up to the boundary partial derivative Omega for some a is an element of (0, 1), where delta(x) = dist(x, partial derivative Omega). For this, we develop a fractional analog of the Krylov boundary Hamack method. Moreover, under further regularity assumptions on g we obtain higher order Holder estimates for u and u/delta(s). Namely, the C-beta norms of u and u/delta(s) in the sets {x is an element of Omega: delta(x) >= rho} are controlled by C rho(s-beta) and C rho(alpha-beta), respectively. These regularity results are crucial tools in our proof of the Pohozaev identity for the fractional Laplacian (Ros-Oton and Serra, 2012 [19,20]). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
[21]   Existence and multiplicity results for Dirichlet problem with fractional Laplacian and nonlinearity [J].
Bors, Dorota ;
Stanczy, Robert .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
[22]   Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian [J].
Pierre Aime Feulefack ;
Sven Jarohs ;
Tobias Weth .
Journal of Fourier Analysis and Applications, 2022, 28
[23]   Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian [J].
Garofalo, Nicola ;
Ros-Oton, Xavier .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) :1309-1365
[24]   The Vladimirov–Taibleson operator: inequalities, Dirichlet problem, boundary Hölder regularity [J].
Anatoly N. Kochubei .
Journal of Pseudo-Differential Operators and Applications, 2023, 14
[25]   The Vladimirov-Taibleson operator: inequalities, Dirichlet problem, boundary Holder regularity [J].
Kochubei, Anatoly N. .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)
[26]   Local Elliptic Regularity for the Dirichlet Fractional Laplacian (vol 17, pg 387, 2017) [J].
Biccari, Umberto ;
Warma, Mahamadi ;
Zuazua, Enrique .
ADVANCED NONLINEAR STUDIES, 2017, 17 (04) :837-839
[27]   Principal eigenvalue of mixed problem for the fractional Laplacian: Moving the boundary conditions [J].
Leonori, Tommaso ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana ;
Soria, Fernando .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (02) :593-619
[28]   ON THE DIRICHLET BOUNDARY VALUE PROBLEM FOR THE NORMALIZED p-LAPLACIAN EVOLUTION [J].
Banerjee, Agnid ;
Garofalo, Nicola .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) :1-21
[29]   Fractional variable exponents Sobolev trace spaces and Dirichlet problem for the regional fractional p(.) -Laplacian [J].
Mohamed Berghout .
Journal of Elliptic and Parabolic Equations, 2023, 9 :565-594
[30]   Boundary regularity in the Dirichlet problem for the invariant Laplacians Δγ on the unit real ball [J].
Liu, CW ;
Peng, LZ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) :3259-3268