The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary

被引:582
|
作者
Ros-Oton, Xavier [1 ]
Serra, Joaquim [1 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2014年 / 101卷 / 03期
关键词
Fractional Laplacian; Dirichlet problem; Boundary regularity;
D O I
10.1016/j.matpur.2013.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity up to the boundary of solutions to the Dirichlet problem for the fractional Laplacian. We prove that if u is a solution of (-Delta)(s)u = g in Omega, u equivalent to 0 in R-n\Omega, for some s is an element of (0, 1) and g is an element of L-infinity (Omega), then u is C-s (R-n) and u/delta(s)/Omega is C-alpha up to the boundary partial derivative Omega for some a is an element of (0, 1), where delta(x) = dist(x, partial derivative Omega). For this, we develop a fractional analog of the Krylov boundary Hamack method. Moreover, under further regularity assumptions on g we obtain higher order Holder estimates for u and u/delta(s). Namely, the C-beta norms of u and u/delta(s) in the sets {x is an element of Omega: delta(x) >= rho} are controlled by C rho(s-beta) and C rho(alpha-beta), respectively. These regularity results are crucial tools in our proof of the Pohozaev identity for the fractional Laplacian (Ros-Oton and Serra, 2012 [19,20]). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:275 / 302
页数:28
相关论文
共 50 条
  • [1] The Neumann problem for the fractional Laplacian: regularity up to the boundary
    Audrito, Alessandro
    Felipe-Navarro, Juan-Carlos
    Ros-Oton, Xavier
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) : 1155 - 1222
  • [2] Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian
    Jhaveri, Yash
    Neumayer, Robin
    ADVANCES IN MATHEMATICS, 2017, 311 : 748 - 795
  • [3] Local Elliptic Regularity for the Dirichlet Fractional Laplacian
    Biccari, Umberto
    Warma, Mahamadi
    Zuazua, Enrique
    ADVANCED NONLINEAR STUDIES, 2017, 17 (02) : 387 - 409
  • [4] Semilinear Dirichlet problem for the fractional Laplacian
    Bogdan, Krzysztof
    Jarohs, Sven
    Kania, Edyta
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [5] Global endpoint regularity estimates for the fractional Dirichlet problem
    Wenxian Ma
    Sibei Yang
    Mathematische Zeitschrift, 2024, 306
  • [6] Global endpoint regularity estimates for the fractional Dirichlet problem
    Ma, Wenxian
    Yang, Sibei
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [7] Interior and up to the boundary regularity for the fractional g-Laplacian: The convex case
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 223
  • [8] Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 521 - 539
  • [9] A HOPF'S LEMMA AND THE BOUNDARY REGULARITY FOR THE FRACTIONAL P-LAPLACIAN
    Jin, Lingyu
    Li, Yan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1477 - 1495
  • [10] A SURVEY ON BOUNDARY REGULARITY FOR THE FRACTIONAL p- LAPLACIAN AND ITS APPLICATIONS
    Iannizzotto, Antonio
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2024, 15 (01)