Nanocrystalline mesoporous LiFePO4 thin-films as cathodes for Li-ion microbatteries

被引:29
作者
Mosa, Jadra [1 ,2 ]
Aparicio, Mario [2 ]
Duran, Alicia [2 ]
Laberty-Robert, Christel [1 ]
Sanchez, Clement [1 ]
机构
[1] Univ Paris 06, CNRS, Coll France, Lab Chim Mat Condensee Paris,UMR 7574, F-75005 Paris, France
[2] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain
关键词
PULSED-LASER DEPOSITION; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; PHOSPHO-OLIVINES; SYNTHESIZED LIFEPO4; LITHIUM; PERFORMANCE; BATTERY; IRON; MICROSPHERES;
D O I
10.1039/c3ta14142j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mesoporous LiFePO4 thin films prepared using a facile and low-cost synthesis approach have been studied as electrodes for Li-ion batteries. LiFePO4 mesoporous films (similar to 300 nm) were synthesized by a template-directed sol-gel chemistry coupled with the dip-coating approach, followed by heat-treatment under a reducing atmosphere (10% H-2/N-2) at temperatures ranging from 400 to 760 degrees C. These mesostructured LiFePO4 films are constituted of a connected network of mesopores (similar to 60 nm) and an assembly of crystalline nanoparticles (similar to 50 nm) in the pore wall. In addition, the presence of carbon, evidenced by Raman spectroscopy, provides efficient electron pathways along the 3-D nanoarchitectures. Cycling performance was evaluated for optimal nanocrystalline LiFePO4 thin films showing an excellent high rate performance after 1000 cycles (158 mA h g(-1)). These data provide important information on new types of porous architectures for the design of efficient electrodes for micro-batteries.
引用
收藏
页码:3038 / 3046
页数:9
相关论文
共 73 条
[1]   CHARACTERIZATION OF SILICA-GELS BY INFRARED REFLECTION SPECTROSCOPY [J].
ALMEIDA, RM ;
GUITON, TA ;
PANTANO, CG .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1990, 121 (1-3) :193-197
[2]  
Aparicio M., 2012, ADV SOL GEL DERIVED
[3]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[4]   Pyrolysis, crystallization, and sintering of mesostructured titania thin films assessed by in situ thermal ellipsometry [J].
Bass, John D. ;
Grosso, David ;
Boissiere, Cedric ;
Sanchez, Clement .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7882-7897
[5]   Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability [J].
Bilecka, Idalia ;
Hintennach, Andreas ;
Djerdj, Igor ;
Novak, Petr ;
Niederberger, Markus .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (29) :5125-5128
[6]   Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1) [J].
Burba, CM ;
Frech, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1032-A1038
[7]   Optimization of synthesis process for carbon-mixed LiFePO4 composite thin-film cathodes deposited by bias sputtering [J].
Chiu, K. -F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :A129-A133
[8]   Defect-free solvothermally assisted synthesis of microspherical mesoporous LiFePO4/C [J].
Cho, Min-Young ;
Kim, Kwang-Bum ;
Lee, Jae-Won ;
Kim, Haegyeom ;
Kim, Hyungsub ;
Kang, Kisuk ;
Roh, Kwang Chul .
RSC ADVANCES, 2013, 3 (10) :3421-3427
[9]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[10]   Orientation-Dependent Arrangement of Antisite Defects in Lithium Iron(II) Phosphate Crystals [J].
Chung, Sung-Yoon ;
Choi, Si-Young ;
Yamamoto, Takahisa ;
Ikuhara, Yuichi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (03) :543-546