Non-PORC behaviour in groups of order p7

被引:2
|
作者
Vaughan-Lee, Michael [1 ]
机构
[1] Univ Oxford Christ Church, Oxford OX1 1DP, England
关键词
p-Group; PORC;
D O I
10.1016/j.jalgebra.2016.07.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a family of 3-generator groups G((p,x,y)) indexed by a prime p > 3 and integers x, y. The groups all have order p(7) and class 3. If x and y are coprime to p, then the order of the automorphism group of G((p,x,y)) isone of four polynomials in p, where the choice of polynomial depends on the number of roots in GF(p) of the polynomial g(t), where g(t) = t(3)-xt-y. If x and y are integers such that the Galois group of g(t) over the rationals is S-3, then the number of roots of g(t) over GF(p) is not a PORC function. So for most pairs of integers x, y the order of the automorphism group of G((p,x,y)) is not a PORC function. Nevertheless, the frequency with which the different orders of automorphism group arise over all x, y is describable in terms of PORC functions. Crown Copyright (C) 2016 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 26 条
  • [1] Commutators in groups of order p7
    Kaushik, Rahul
    Yadav, Manoj K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (07)
  • [2] Counting p-groups and Lie algebras using PORC formulae
    Eick, Bettina
    Vaughan-Lee, Michael
    JOURNAL OF ALGEBRA, 2020, 545 : 198 - 212
  • [3] GROUPS OF ORDER p(8) AND EXPONENT p
    Vaughan-Lee, Michael
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2015, 4 (04) : 25 - 42
  • [4] The non-abelian tensor square of p-groups of order p(4)
    Chorbanzadeh, Taleea Jalaeeyan
    Parvizi, Mohsen
    Niroomand, Peyman
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [5] CHARACTERIZATION OF FINITE p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS (t(G)=7)
    Jafari, S. H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07): : 2567 - 2576
  • [6] On elements of order p in powerful p-groups
    Héthelyi, L
    Lévai, L
    JOURNAL OF ALGEBRA, 2003, 270 (01) : 1 - 6
  • [7] The Order of Automorphism Group of Some Groups of Order p(6)
    Zhao, Z. H.
    Su, H.
    Qiu, D. Y.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (04) : 801 - 806
  • [8] ON CAPABLE GROUPS OF ORDER p4
    Salahhsour, Mohammad A.
    Ashrafi, Ali Reza
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (04): : 633 - 640
  • [9] On the non-abelian tensor square of all groups of order dividing p5
    Ghorbanzadeh, Taleea Jalaeeyan
    Parvizi, Mohsen
    Niroomand, Peyman
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (06)
  • [10] The modular group algebra problem for groups of order p(5)
    Salim, MAM
    Sandling, R
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 : 229 - 237