Edge-pancyclicity of coupled graphs

被引:8
作者
Lih, KW
Song, ZM
Wang, WF
Zhang, KM
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] SE Univ, Dept Appl Math, Nanjing 210096, Peoples R China
[3] Liaoning Univ, Dept Math, Shenyang 110036, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
coupled graph; edge-panciclicity; ear decomposition;
D O I
10.1016/S0166-218X(01)00307-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coupled graph c(G) of a plane graph G is the graph defined on the vertex set V(G)boolean ORF(G) so that two vertices in c(G) are joined by an edge if and only if they are adjacent or incident in G. We prove that the coupled graph of a 2-connected plane graph is edge-pancyclic. However, there exists a 2-edge-connected plane graph G such that c(G) is not Hamiltonian. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 11 条
  • [1] COMMENTS ON A 6-COLOR PROBLEM OF RINGEL,G.
    BODENDIEK, R
    SCHUMACHER, H
    WAGNER, K
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1983, 53 : 41 - 52
  • [2] BODENDIEK R, 1984, MATH NACHR, V117, P323
  • [3] A NEW PROOF OF THE 6 COLOR THEOREM
    BORODIN, OV
    [J]. JOURNAL OF GRAPH THEORY, 1995, 19 (04) : 507 - 521
  • [4] FAUDREE RJ, 1975, J LOND MATH SOC, V12, P59
  • [5] Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P17, DOI 10.1016/0095-8956(74)90090-2
  • [6] HAMILTONIAN TOTAL GRAPHS
    FLEISCHNER, H
    HOBBS, AM
    [J]. MATHEMATISCHE NACHRICHTEN, 1975, 68 : 59 - 82
  • [7] ENTIRE GRAPH OF A BRIDGELESS CONNECTED PLANE GRAPH IS HAMILTONIAN
    HOBBS, AM
    MITCHEM, J
    [J]. DISCRETE MATHEMATICS, 1976, 16 (03) : 233 - 239
  • [8] MITCHEM J, 1972, GRAPH THEORY APPL, P189
  • [9] Ringel G., 1965, Abh. Math. Sem. Univ. Hamburg, V29, P107, DOI [10.1007/BF02996313, DOI 10.1007/BF02996313]
  • [10] SCHUMACHER H, 1986, MATH NACHR, V125, P291