Synthetic band-structure engineering in polariton crystals with non-Hermitian topological phases

被引:54
作者
Pickup, L. [1 ]
Sigurdsson, H. [1 ,2 ]
Ruostekoski, J. [3 ]
Lagoudakis, P. G. [1 ,2 ]
机构
[1] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England
[2] Skolkovo Inst Sci & Technol, Novaya St 100, Skolkovo 143025, Russia
[3] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
SOLITONS; LIGHT;
D O I
10.1038/s41467-020-18213-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic crystal lattices provide ideal environments for simulating and exploring the band structure of solid-state materials in clean and controlled experimental settings. Physical realisations have, so far, dominantly focused on implementing irreversible patterning of the system, or interference techniques such as optical lattices of cold atoms. Here, we realise reprogrammable synthetic band-structure engineering in an all optical exciton-polariton lattice. We demonstrate polariton condensation into excited states of linear one-dimensional lattices, periodic rings, dimerised non-trivial topological phases, and defect modes utilising malleable optically imprinted non-Hermitian potential landscapes. The stable excited nature of the condensate lattice with strong interactions between sites results in an actively tuneable non-Hermitian analogue of the Su-Schrieffer-Heeger system. To simulate band structures of solid state materials synthetic lattices are usually generated by optical lattices or by irreversible patterning the system. Here, the authors present reconfigurable synthetic band-structures in optical exciton-polariton lattices and generate non-Hermitian topological phases.
引用
收藏
页数:8
相关论文
共 64 条
[1]  
[Anonymous], 2008, PHOTONIC CRYSTALS
[2]  
Ashcroft Neil W., 1989, Solid State Physics
[3]   Polariton condensation in an optically induced two-dimensional potential [J].
Askitopoulos, A. ;
Ohadi, H. ;
Kavokin, A. V. ;
Hatzopoulos, Z. ;
Savvidis, P. G. ;
Lagoudakis, P. G. .
PHYSICAL REVIEW B, 2013, 88 (04)
[4]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/NPHYS2790, 10.1038/nphys2790]
[5]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[6]   Coupling between Exciton-Polariton Corner Modes through Edge States [J].
Banerjee, R. ;
Mandal, S. ;
Liew, T. C. H. .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)
[7]   A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases [J].
Belopolski, Ilya ;
Xu, Su-Yang ;
Koirala, Nikesh ;
Liu, Chang ;
Bian, Guang ;
Strocov, Vladimir N. ;
Chang, Guoqing ;
Neupane, Madhab ;
Alidoust, Nasser ;
Sanchez, Daniel ;
Zheng, Hao ;
Brahlek, Matthew ;
Rogalev, Victor ;
Kim, Timur ;
Plumb, Nicholas C. ;
Chen, Chaoyu ;
Bertran, Francois ;
Le Fevre, Patrick ;
Taleb-Ibrahimi, Amina ;
Asensio, Maria-Carmen ;
Shi, Ming ;
Lin, Hsin ;
Hoesch, Moritz ;
Oh, Seongshik ;
Hasan, M. Zahid .
SCIENCE ADVANCES, 2017, 3 (03)
[8]  
Berloff NG, 2017, NAT MATER, V16, P1120, DOI [10.1038/nmat4971, 10.1038/NMAT4971]
[9]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[10]   Non-Hermitian Boundary Modes and Topology [J].
Borgnia, Dan S. ;
Kruchkov, Alex Jura ;
Slager, Robert-Jan .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)