Localized nonlinear excitations in diffusive memristor-based neuronal networks

被引:16
作者
Tagne, A. S. Tankou [1 ]
Takembo, C. N. [2 ]
Ben-Bolie, H. G. [1 ]
Ateba, P. Owona [1 ]
机构
[1] Univ Yaounde I, Dept Phys, Nucl Phys Lab, Fac Sci, Yaounde, Cameroon
[2] Univ Yaounde I, Dept Phys, Biophys Lab, Fac Sci, Yaounde, Cameroon
来源
PLOS ONE | 2019年 / 14卷 / 06期
关键词
ELECTRICAL-ACTIVITY; BACKLUND TRANSFORMATION; MODEL;
D O I
10.1371/journal.pone.0214989
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We extend the existing ordinary differential equations modeling neural electrical activity to include the memory effect of electromagnetic induction through magnetic flux, used to describe time varying electromagnetic field. Through the multi-scale expansion in the semi-discrete approximation, we show that the neural network dynamical equations can be governed by the complex Ginzburg-Landau equation. The analytical and numerical envelop soliton of this equation are reported. The results obtained suggest the possibility of collective information processing and sharing in the nervous system, operating in both the spatial and temporal domains in the form of localized modulated waves. The effects of memristive synaptic electromagnetic induction coupling and perturbation on the modulated action potential dynamics examined. Large electromagnetic induction coupling strength may contribute to signal block as the amplitude of modulated waves are observed to decrease. This could help in the development of a chemical brain anaesthesia for some brain pathologies.
引用
收藏
页数:16
相关论文
共 42 条
  • [1] Wave-Processing of Long-Scale Information by Neuronal Chains
    Antonio Villacorta-Atienza, Jose
    Makarov, Valeri A.
    [J]. PLOS ONE, 2013, 8 (02):
  • [2] Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction
    Bao, Han
    Liu, Wenbo
    Hu, Aihuang
    [J]. NONLINEAR DYNAMICS, 2019, 95 (01) : 43 - 56
  • [3] Brunak S, 1990, NEURAL NETWORKS COMP
  • [4] Coobes S, 2005, PHYS REV LETT, V94, DOI [10.1103/PhysRevLett.94.148102, DOI 10.1103/PHYSREVLETT.94.148102]
  • [5] Dauxois T., 2006, PHYS SOLITONS
  • [6] On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model
    Ermakova, Elena A.
    Shnol, Emmanuil E.
    Panteleev, Mikhail A.
    Butylin, Andrey A.
    Volpert, Vitaly
    Ataullakhanov, Fazoil I.
    [J]. PLOS ONE, 2009, 4 (02):
  • [7] IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE
    FITZHUGH, R
    [J]. BIOPHYSICAL JOURNAL, 1961, 1 (06) : 445 - &
  • [8] Backlund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation
    Gao, Li-Na
    Zi, Yao-Yao
    Yin, Yu-Hang
    Ma, Wen-Xiu
    Lu, Xing
    [J]. NONLINEAR DYNAMICS, 2017, 89 (03) : 2233 - 2240
  • [9] The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain
    Gu, Huaguang
    Pan, Baobao
    Li, Yuye
    [J]. NONLINEAR DYNAMICS, 2015, 82 (03) : 1191 - 1210
  • [10] Hasegawa A., 1989, SPRINGER TRACT MODER, V116