PERIODIC SOLUTIONS OF EL NINO MODEL THROUGH THE VALLIS DIFFERENTIAL SYSTEM

被引:10
作者
Euzebio, Rodrigo Donizete [1 ]
Llibre, Jaume [2 ]
机构
[1] UNESP Univ Estadual Paulista, Dept Math, IBILCE, BR-15054000 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
基金
巴西圣保罗研究基金会;
关键词
Vallis system; periodic solutions; El Nino model; LOCALIZATION; SETS;
D O I
10.3934/dcds.2014.34.3455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By rescaling the variables, the parameters and the periodic function of the Vallis differential system we provide sufficient conditions for the existence of periodic solutions and we also characterize their kind of stability. The results are obtained using averaging theory.
引用
收藏
页码:3455 / 3469
页数:15
相关论文
共 50 条
[21]   STABLE PERIODIC SOLUTIONS IN SCALAR PERIODIC DIFFERENTIAL DELAY EQUATIONS [J].
Ivanov, Anatoli ;
Shelyag, Sergiy .
ARCHIVUM MATHEMATICUM, 2023, 59 (01) :69-76
[22]   Periodic solutions in a class of periodic switching delay differential equations [J].
Wang, Yufeng ;
Chen, Yining ;
Guo, Hongpeng .
ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01)
[23]   Periodic and quasi-periodic solutions of a four-dimensional singular differential system describing the motion of vortices [J].
Liang, Zaitao ;
Li, Shengjun ;
Li, Xin .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
[24]   Anti-synchronisation of Vallis Chaotic Systems using Nonlinear Active Control Technique Quantitative features of El-Nino Southern Oscillation (ENSO) phenomenon [J].
Tiwari, Eshan ;
Kumar, Vikash ;
Singh, Piyush Pratap .
2018 2ND INTERNATIONAL CONFERENCE ON POWER, ENERGY AND ENVIRONMENT: TOWARDS SMART TECHNOLOGY (ICEPE), 2018,
[25]   Solutions and multiple solutions for periodic systems with nonhomogeneous differential operators [J].
Kyritsi, Sophia Th. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :2172-2193
[26]   Existence of periodic solutions of ordinary differential equations [J].
Teixeira, Joao ;
Borges, Maria Joao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) :414-422
[27]   Periodic solutions to impulsive differential inclusions with constraints [J].
Kryszewski, Wojciech ;
Plaskacz, Slawomir .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (09) :1794-1804
[28]   Periodic solutions for a nonautonomous ordinary differential equation [J].
Albuquerque Araujo, Anderson Luis .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2897-2903
[29]   Periodic solutions in a given set of differential systems [J].
Andres, J ;
Krajc, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :495-509
[30]   On the behavior of solutions of some periodic differential equations [J].
Dads, E. Ait ;
Es-sebbar, B. ;
Lhachimi, L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 544 (01)