PERIODIC SOLUTIONS OF EL NINO MODEL THROUGH THE VALLIS DIFFERENTIAL SYSTEM

被引:10
作者
Euzebio, Rodrigo Donizete [1 ]
Llibre, Jaume [2 ]
机构
[1] UNESP Univ Estadual Paulista, Dept Math, IBILCE, BR-15054000 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
基金
巴西圣保罗研究基金会;
关键词
Vallis system; periodic solutions; El Nino model; LOCALIZATION; SETS;
D O I
10.3934/dcds.2014.34.3455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By rescaling the variables, the parameters and the periodic function of the Vallis differential system we provide sufficient conditions for the existence of periodic solutions and we also characterize their kind of stability. The results are obtained using averaging theory.
引用
收藏
页码:3455 / 3469
页数:15
相关论文
共 10 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]  
[Anonymous], 1956, Some Problems of the Theory of Nonlinear Oscillations
[3]  
[Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
[4]  
Buica A, 2007, COMMUN PUR APPL ANAL, V6, P103
[5]   Localization of invariant compact sets of nonautonomous systems [J].
Kanatnikov, A. N. ;
Krishchenko, A. P. .
DIFFERENTIAL EQUATIONS, 2009, 45 (01) :46-52
[6]   Localization of compact invariant sets of nonlinear time-varying systems [J].
Krishchenko, Alexander P. ;
Starkov, Konstantin E. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (05) :1599-1604
[7]  
Llibre J., PERIODIC SO IN PRESS
[8]  
Roseau M., 1966, Vibrations non lineaires et theorie de la stabilite, V8
[9]  
Strozzi D., 1999, ORIGIN INT IRREGULAR
[10]   CONCEPTUAL MODELS OF EL-NINO AND THE SOUTHERN OSCILLATION [J].
VALLIS, GK .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1988, 93 (C11) :13979-13991