The Linearized 2D Inviscid Shallow Water Equations in a Rectangle: Boundary Conditions and Well-Posedness

被引:19
作者
Huang, Aimin [1 ]
Temam, Roger [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
HYPERBOLIC SYSTEMS; EXISTENCE; REGIONS;
D O I
10.1007/s00205-013-0702-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the linearized 2D inviscid shallow water equations in a rectangle. A set of boundary conditions is proposed which make these equations well-posed. Several different cases occur depending on the relative values of the reference velocities (u (0), v (0)) and reference height (sub- or super-critical flow at each part of the boundary).
引用
收藏
页码:1027 / 1063
页数:37
相关论文
共 40 条
[1]  
[Anonymous], 1965, Acta Math., V113, P89, DOI [10.1007/BF02391775, DOI 10.1007/BF02391775]
[2]  
[Anonymous], 2007, Oxford Math. Monogr
[3]  
[Anonymous], 1974, FUNCTIONAL ANAL SEMI
[4]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[5]   Transport of pollutant in shallow water a two time steps kinetic method [J].
Audusse, E ;
Bristeau, MO .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :389-416
[6]   A MULTILAYER SAINT-VENANT SYSTEM WITH MASS EXCHANGES FOR SHALLOW WATER FLOWS. DERIVATION AND NUMERICAL VALIDATION [J].
Audusse, Emmanuel ;
Bristeau, Marie-Odile ;
Perthame, Benoit ;
Sainte-Marie, Jacques .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01) :169-200
[7]  
BERNARDI C, 1991, COMMUN PART DIFF EQ, V16, P59
[8]  
Bousquet A., 2013, COMMUN COMP IN PRESS
[9]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[10]  
Bresch D., 2007, Adv. Math. Fluid Mech., P15, DOI DOI 10.1007/978-3-7643-7742-7_2