K-Theoretic Generalized Donaldson-Thomas Invariants

被引:6
作者
Kiem, Young-Hoon [1 ]
Savvas, Michail [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
MODULI; COMPLEXES; CYCLES;
D O I
10.1093/imrn/rnaa097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of almost perfect obstruction theory on a Deligne-Mumford stack and show that stacks with almost perfect obstruction theories have virtual structure sheaves, which are deformation invariant. The main components in the construction are an induced embedding of the coarse moduli sheaf of the intrinsic normal cone into the associated obstruction sheaf stack and the construction of a K-theoretic Gysinmap for sheaf stacks. We show that many stacks of interest admit almost perfect obstruction theories. As a result, we are able to define virtual structure sheaves and K-theoretic classical and generalized Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau three-folds.
引用
收藏
页码:2123 / 2158
页数:36
相关论文
共 34 条
  • [1] Alper J., 2018, PREPRINT ARXIV E PRI
  • [2] GOOD MODULI SPACES FOR ARTIN STACKS
    Alper, Jarod
    [J]. ANNALES DE L INSTITUT FOURIER, 2013, 63 (06) : 2349 - 2402
  • [3] Bayer A., 2019, PREPRINT ARXIV E PRI
  • [4] The intrinsic normal cone
    Behrend, K
    Fantechi, B
    [J]. INVENTIONES MATHEMATICAE, 1997, 128 (01) : 45 - 88
  • [5] Donaldson-Thomas type invariants via microlocal geometry
    Behrend, Kai
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (03) : 1307 - 1338
  • [6] A 'Darboux theorem' for shifted symplectic structures on derived Artin stacks, with applications
    Ben-Bassat, Oren
    Brav, Christopher
    Bussi, Vittoria
    Joyce, Dominic
    [J]. GEOMETRY & TOPOLOGY, 2015, 19 (03) : 1287 - 1359
  • [7] Chang HL, 2011, COMMUN ANAL GEOM, V19, P807
  • [8] Virtual fundamental classes via dg-manifolds
    Ciocan-Fontanine, Ionut
    Kapranov, Mikhail
    [J]. GEOMETRY & TOPOLOGY, 2009, 13 : 1779 - 1804
  • [9] Localization of virtual classes
    Graber, T
    Pandharipande, R
    [J]. INVENTIONES MATHEMATICAE, 1999, 135 (02) : 487 - 518
  • [10] Huybrechts D., 2010, GEOMETRY MODULI SPAC, DOI DOI 10.1017/CBO9780511711985