A New Method for Solving Interval Neutrosophic Linear Programming Problems

被引:13
作者
Nafei, Amirhossein [1 ]
Yuan, Wenjun [1 ]
Nasseri, Hadi [2 ]
机构
[1] Guangzhou Univ, Dept Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Foshan Univ, Dept Math & Big Data, Foshan 528000, Peoples R China
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2020年 / 33卷 / 04期
关键词
Neutrosophic numbers; Linear programming; Neutrosophic sets; Ranking function; Interval values;
D O I
10.35378/gujs.689125
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neutrosophic set theory is a generalization of the intuitionistic fuzzy set which can be considered as a powerful tool to express the indeterminacy and inconsistent information that exist commonly in engineering applications and real meaningful science activities. In this paper an interval neutrosophic linear programming (INLP) model will be presented, where its parameters are represented by triangular interval neutrosophic numbers (TINNs) and call it INLP problem. Afterward, by using a ranking function we present a technique to convert the INLP problem into a crisp model and then solve it by standard methods.
引用
收藏
页码:796 / 808
页数:13
相关论文
共 24 条