Bernstein Polynomials and Operator Theory

被引:14
作者
Badea, Catalin [1 ]
机构
[1] Univ Sci & Technol Lille, Dept Math, Lab Paul Painleve, UMR CNRS 8524, F-59655 Villeneuve Dascq, France
关键词
Bounded linear operators; convergence of iterates; spectral theory; Bernstein polynomials;
D O I
10.1007/s00025-008-0333-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kelisky and Rivlin have proved that the iterates of the Bernstein operator (of fixed order) converge to L, the operator of linear interpolation at the endpoints of the interval [0, 1]. In this paper we provide a large class of (not necessarily positive) linear bounded operators T on C[0, 1] for which the iterates T(n) converge towards L in the operator norm. The proof uses methods from the spectral theory of linear operators.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 18 条
  • [1] Agratini O., 2003, E J APPROX, V9, P415
  • [2] Altomare F, 1994, GRUYTER STUDIES MATH, V17
  • [3] [Anonymous], 1973, J. Approx. Theory, DOI DOI 10.1016/0021-9045(73)90028-2
  • [4] BERENS H, 1980, APPROXIMATION THEORY, V2, P213
  • [5] Calugareanu G, 1966, GAZ MAT A, V71, P448
  • [6] The eigenstructure of the Bernstein operator
    Cooper, S
    Waldron, S
    [J]. JOURNAL OF APPROXIMATION THEORY, 2000, 105 (01) : 133 - 165
  • [7] da Silva M. R., 1985, PORTUGAL MATH, V42, P225
  • [8] The limiting semigroup of the Bernstein iterates: Degree of convergence
    Gonska, H
    Rasa, I
    [J]. ACTA MATHEMATICA HUNGARICA, 2006, 111 (1-2) : 119 - 130
  • [9] Gonska H., 2006, J. of Applied Functional Analysis, V1, P403
  • [10] Gonska H. H., 1987, STUDIA SCI MATYH HUN, V22, P287