Seismic evaluation of reinforced concrete bridges using capacity-based inelastic displacement spectra

被引:4
作者
Wang, Ping-Hsiung [1 ]
Chang, Kuo-Chun [2 ]
Dzeng, Dzong-Chwang [3 ]
Lin, Tzu-Kang [4 ]
Hung, Hsiao-Hui [5 ]
Cheng, Wei-Chung [2 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Natl Taiwan Univ, Dept Civil Engn, Taipei, Taiwan
[3] CECI Engn Consultants Inc, Taipei, Taiwan
[4] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu, Taiwan
[5] Natl Ctr Res Earthquake Engn, Taipei, Taiwan
关键词
bridge; damage index; inelastic displacement spectra; near-fault; reinforced concrete; seismic evaluation; DESIGN; MODEL;
D O I
10.1002/eqe.3425
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A simplified seismic evaluation method using capacity-based inelastic displacement spectra is proposed for reinforced concrete (RC) bridges. The proposed method can not only estimate the maximum displacements of bridges, but can also discriminate the damage indices between the bridge columns, where the Park and Ang's damage index (DI) is considered a promising performance indicator due to its good relationship with the strength capacity state and actual visual damage condition of the bridge column regardless of the imposed loading history. To realize the accuracy and reliability of the proposed method, a hypothetical case study bridge was constructed and analyzed using various structural analysis programs and seismic evaluation methods. It was found that the proposed method can receive satisfactory estimates of the maximum displacement and DI for both far-field and near-fault ground motions when compared to the nonlinear time history analysis results of the bridge. In contrast, the AASHTO's and Caltrans' methods cannot reflect the response amplification effects caused by the frequency-content characteristics of near-fault ground motions and would therefore significantly underestimate the inelastic responses of bridges. When applying the proposed method to bridges having unequal-height columns and subjected to longitudinal seismic actions, it was found that for the short column of the bridge, the AASHTO's regularity criteria (maximum bent/pier stiffness ratio of 4 for the three-span case study bridge) would lead to a DI of approximately 3.5 times that of the tall column, resulting in significant damage localization and, hence, decreasing the overall lateral deformation capacity of the bridge.
引用
收藏
页码:1845 / 1863
页数:19
相关论文
共 32 条
[21]   SEISMIC DAMAGE ANALYSIS OF REINFORCED-CONCRETE BUILDINGS [J].
PARK, YJ ;
ANG, AHS ;
WEN, YK .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1985, 111 (04) :740-757
[22]  
Priestley M.J.N., 2007, Displacement-based seismic design of structures
[23]  
Reinhorn AM, 1997, SEISMIC DESIGN METHODOLOGIES FOR THE NEXT GENERATION OF CODES, P277
[24]   Inelastic displacement ratios for evaluation of existing structures [J].
Ruiz-García, J ;
Miranda, E .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2003, 32 (08) :1237-1258
[25]   Direct displacement-based seismic assessment procedure for multi-span reinforced concrete bridges with single-column piers [J].
Sadan, Oguz Bahadir ;
Petrini, Lorenza ;
Calvi, Gian Michele .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2013, 42 (07) :1031-1051
[26]  
SHIBATA A, 1976, J STRUCT DIV-ASCE, V102, P1
[27]  
Shimazaki K., 1984, Technical Research Report of Hazama-Gumi, P145
[28]  
The European Standard (British Standard), 2005, 19982 EN EUR STAND, V2005
[29]   Corporate Tax Integrity and the Cost of Debt: Evidence from China [J].
Wang, Pin ;
Zhou, Ali ;
Wang, Yi .
EMERGING MARKETS FINANCE AND TRADE, 2022, 58 (06) :1702-1711
[30]   Capacity-based inelastic displacement spectra for reinforced concrete bridge columns [J].
Wang, Ping-Hsiung ;
Chang, Kuo-Chun ;
Ou, Yu-Chen .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2019, 48 (14) :1536-1555