Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy

被引:6
|
作者
Hirschhaeuser, Christine [1 ]
Sydykov, Akylbek [2 ]
Wolf, Annemarie [1 ]
Esfandiary, Azadeh [2 ]
Bornbaum, Julia [1 ]
Kutsche, Hanna Sarah [1 ]
Boengler, Kerstin [1 ]
Sommer, Natascha [2 ]
Schreckenberg, Rolf [1 ]
Schlueter, Klaus-Dieter [1 ]
Weissmann, Norbert [2 ]
Schermuly, Ralph [2 ]
Schulz, Rainer [1 ]
机构
[1] Justus Liebig Univ, Physiol Inst, D-35392 Giessen, Germany
[2] Justus Liebig Univ, Excellence Cluster Cardiopulm Syst ECCPS, D-35392 Giessen, Germany
关键词
reactive oxygen species; cardiac hypertrophy; p66shc; heart failure; OXIDATIVE STRESS; VENTRICULAR DYSFUNCTION; LIFE-SPAN; FAILURE; ROS; PHOSPHORYLATION; COMPLEX; ANGIOGENESIS; DETERMINANT; ANTIOXIDANT;
D O I
10.3390/ijms21249339
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The leading cause of death in pulmonary arterial hypertension (PAH) is right ventricular (RV) failure (RVF). Reactive oxygen species (ROS) have been suggested to play a role in the development of RV hypertrophy (RVH) and the transition to RVF. The hydrogen peroxide-generating protein p66shc has been associated with left ventricular (LV) hypertrophy but its role in RVH is unclear. The purpose of this study was to determine whether genetic deletion of p66shc affects the development and/or progression of RVH and RVF in the pulmonary artery banding (PAB) model of RV pressure overload. The impact of p66shc on mitochondrial ROS formation, RV cardiomyocyte function, as well as on RV morphology and function were studied three weeks after PAB or sham operation. PAB in wild type mice did not affect mitochondrial ROS production or RV cardiomyocyte function, but induced RVH and impaired cardiac function. Genetic deletion of p66shc did also not alter basal mitochondrial ROS production or RV cardiomyocyte function, but impaired RV cardiomyocyte shortening was observed following PAB. The development of RVH and RVF following PAB was not affected by p66shc deletion. Thus, our data suggest that p66shc-derived ROS are not involved in the development and progression of RVH or RVF in PAH.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] P66Shc Deletion Ameliorates Oxidative Stress and Cardiac Dysfunction in Pressure Overload-Induced Heart Failure
    Wang, Yong
    Qu, Hua
    Liu, Jing
    JOURNAL OF CARDIAC FAILURE, 2020, 26 (03) : 243 - 253
  • [2] Apoptosis in pressure overload-induced heart hypertrophy in the rat
    Teiger, E
    Dam, TV
    Richard, L
    Wisnewsky, C
    Tea, BS
    Gaboury, L
    Tremblay, J
    Schwartz, K
    Hamet, P
    JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (12): : 2891 - 2897
  • [3] Senescent heart compared with pressure overload-induced hypertrophy
    Assayag, P
    Charlemagne, D
    deLeiris, J
    Boucher, F
    Valere, PE
    Lortet, S
    Swynghedauw, B
    Besse, S
    HYPERTENSION, 1997, 29 (01) : 15 - 21
  • [4] Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice
    Weng, Li-qing
    Zhang, Wen-bin
    Ye, Yong
    Yin, Pei-pei
    Yuan, Jie
    Wang, Xing-xu
    Kang, Le
    Jiang, Sha-sha
    You, Jie-yun
    Wu, Jian
    Gong, Hui
    Ge, Jun-bo
    Zou, Yun-zeng
    ACTA PHARMACOLOGICA SINICA, 2014, 35 (08) : 1005 - 1014
  • [5] Calpain activation is involved in the pressure overload-induced hypertrophy in the mouse heart
    Fukunaga, K
    Hashimoto, M
    Shioda, N
    Hachimura, E
    Shirasaki, Y
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2005, 97 : 136P - 136P
  • [6] Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice
    Li-qing Weng
    Wen-bin Zhang
    Yong Ye
    Pei-pei Yin
    Jie Yuan
    Xing-xu Wang
    Le Kang
    Sha-sha Jiang
    Jie-yun You
    Jian Wu
    Hui Gong
    Jun-bo Ge
    Yun-zeng Zou
    Acta Pharmacologica Sinica, 2014, 35 : 1005 - 1014
  • [7] Autophagy and pressure overload-induced cardiac hypertrophy
    Zeng, Yong
    Ren, Wei-Qiong
    Wen, Ai-Zhen
    Zhang, Wen
    Fan, Fu-Yuan
    Chen, Ou-Ying
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2022, 24 (12) : 1101 - 1108
  • [8] Endogenous selenoprotein P mediates pressure overload-induced cardiac hypertrophy
    Usui, S.
    Takamura, M.
    Misu, H.
    Mural, H.
    Furusho, H.
    Takashima, S.
    Takamura, T.
    Oto, I.
    Kaneko, S.
    EUROPEAN HEART JOURNAL, 2017, 38 : 294 - 295
  • [9] Involvement of p66Shc in TNFα-Induced Endothelial Dysfunction
    Orlando, Maura R.
    Laviola, Luigi
    Tortosa, Federica
    Incalza, Maria Angela
    Melchiorre, Mariangela
    Leonardini, Anna
    Perrini, Sebastio
    Natalicchio, Annalisa
    Giorgino, Francesco
    DIABETES, 2010, 59 : A241 - A241
  • [10] The implication of p66shc in oxidative stress induced by deltamethrin
    Ding, Ruqian
    Cao, Zongfu
    Wang, Yihan
    Gao, Xiaobo
    Luo, Haiyan
    Zhang, Changyong
    Ma, Shuangcheng
    Ma, Xu
    Jin, Hongyu
    Lu, Cailing
    CHEMICO-BIOLOGICAL INTERACTIONS, 2017, 278 : 162 - 169