NEWTON-PICARD PRECONDITIONERS FOR TIME-PERIODIC PARABOLIC OPTIMAL CONTROL PROBLEMS

被引:6
作者
Hante, F. M. [1 ]
Mommer, M. S. [2 ]
Potschka, A. [3 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[2] Modellierung & Syst Optimierung Mommer GmbH, D-69115 Heidelberg, Germany
[3] Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
关键词
periodic boundary condition; parabolic PDE; Newton-Picard iteration; self-adjoint indefinite preconditioner; SIMULATED MOVING-BED; PRESSURE SWING ADSORPTION; NUMERICAL-SOLUTION; OPTIMIZATION; SYSTEMS; GMRES;
D O I
10.1137/140967969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of solutions of an optimization problem with time-periodic parabolic partial differential equation constraints and show that the solution inherits high smoothness properties from the given data. We use the theory of semigroups in conjunction with spectral decompositions of their generators in order to derive detailed representation formulas for shooting operators in function space and their adjoints. A spectral truncation approach delivers a self-adjoint indefinite Newton-Picard preconditioner for the saddle-point system of optimality conditions in function space. We show that this preconditioner leads to convergence in a function space fixed-point iteration. Moreover, we discuss that this preconditioner can be approximated well by a two-grid approach. We address some implementation issues and present numerical results for three-dimensional instationary problems with more than 100,000,000 degrees of freedom.
引用
收藏
页码:2206 / 2225
页数:20
相关论文
共 39 条
  • [1] Nested multigrid methods for time-periodic, parabolic optimal control problems
    Abbeloos, Dirk
    Diehl, Moritz
    Hinze, Michael
    Vandewalle, Stefan
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 27 - 38
  • [2] Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling
    Agarwal, Anshul
    Biegler, Lorenz T.
    Zitney, Stephen E.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (05) : 2327 - 2343
  • [3] [Anonymous], 2006, Springer Series in Computational Mathematics
  • [4] [Anonymous], 2002, Lineare Funktionalanalysis: Eine anwendungsorientierte Einf hrung
  • [5] Arendt W., 2009, Mathematical Analysis of Evolution, Information, and Complexity, P1
  • [6] BALAKRISHNAN AV, 1981, APPL MATH, V3
  • [7] Battermann A, 2001, INT SER NUMER MATH, V138, P1
  • [8] Bensoussan A., 1992, S, Mitter Representation and Control of Infinite Dimensional Systems, VII
  • [9] Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
  • [10] Collatz L., 1964, GRUNDLEHREN MATH WIS, V120