Stability and generalization

被引:1010
作者
Bousquet, O [1 ]
Elisseeff, A
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[2] BIOwulf Technol, New York, NY 10007 USA
关键词
D O I
10.1162/153244302760200704
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.
引用
收藏
页码:499 / 526
页数:28
相关论文
共 24 条
[1]   Scale-sensitive dimensions, uniform convergence, and learnability [J].
Alon, N ;
BenDavid, S ;
CesaBianchi, N ;
Haussler, D .
JOURNAL OF THE ACM, 1997, 44 (04) :615-631
[2]  
[Anonymous], 1982, ESTIMATION DEPENDENC
[3]  
BARTLETT P, 1996, ADV NEURAL INFORMATI
[4]  
BONNANS JF, 1996, 2872 INRIA
[5]  
BOUSQUET O, 2001, NEURAL INFORMATION P, V14
[6]  
Breiman L, 1996, ANN STAT, V24, P2350
[7]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[8]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[9]  
DEVROYE I, 1991, NONPARAMETRIC FUNCTI, P31
[10]  
Devroye L., 1996, A probabilistic theory of pattern recognition