Integrating Clipped Spherical Harmonics Expansions

被引:16
作者
Belcour, Laurent [1 ,5 ]
Xie, Guofu [1 ,6 ]
Hery, Christophe [2 ]
Meyer, Mark [2 ]
Jarosz, Wojciech [3 ]
Nowrouzezahrai, Derek [4 ]
机构
[1] Univ Montreal, Montreal, PQ, Canada
[2] Pixar Animat Studios, 1200 Pk Ave, Emeryville, CA USA
[3] Dartmouth Coll, Sudikoff 156,HB 6211,9 Maynard St, Hanover, NH 03755 USA
[4] McGill Univ, McConnell Engn Bldg,3480 Univ St, Montreal, PQ H3A 0E9, Canada
[5] 51 Ave Jean Kuntzmann, F-38330 Montbonnot St Martin, France
[6] Dongsheng Plaza A,5th Floor, Beijing 100083, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 02期
关键词
Zonal harmonics; numerical integration; PRECOMPUTED RADIANCE TRANSFER; LINEARLY-VARYING LUMINAIRES; IRRADIANCE ENVIRONMENT MAPS; SINGLE SCATTERING; APPROXIMATION; EFFICIENT; MODEL;
D O I
10.1145/3015459
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many applications in rendering rely on integrating functions over spherical polygons. We present a new numerical solution for computing the integral of spherical harmonics (SH) expansions clipped to polygonal domains. Our solution, based on zonal decompositions of spherical integrands and discrete contour integration, introduces an important numerical operating for SH expansions in rendering applications. Our method is simple, efficient, and scales linearly in the bandlimited integrand's harmonic expansion. We apply our technique to problems in rendering, including surface and volume shading, hierarchical product importance sampling, and fast basis projection for interactive rendering. Moreover, we show how to handle general, nonpolynomial integrands in a Monte Carlo setting using control variates. Our technique computes the integral of bandlimited spherical functions with performance competitive to (or faster than) more general numerical integration methods for a broad class of problems, both in offline and interactive rendering contexts. Our implementation is simple, relying only on self-contained SH evaluation and discrete contour integration routines, and we release a full source CPU-only and shader-based implementations (<750 lines of commented code).
引用
收藏
页数:12
相关论文
共 43 条
[1]  
Annen Thomas., 2004, EUROGRAPHICS SYMPOSI, P331, DOI [DOI 10.2312/EGWR.EGSR04.331-336/331-336.PDF?SEQUENCE=1ISALLOWED=Y, 10.2312/EGWR.EGSR04.331-336/331-336.pdf?sequence=1isAllowed=y]
[2]  
[Anonymous], 2016, PHYS BASED RENDERING
[3]  
Arvo James R., 1995, P 1995 SIGGRAPH ANN
[4]   Quadrature formulas for integration of multivariate trigonometric polynomials on spherical triangles [J].
Beckmann, J. ;
Mhaskar, H. N. ;
Prestin, J. .
GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2012, 3 (01) :119-138
[5]   Local numerical integration on the sphere [J].
Beckmann J. ;
Mhaskar H.N. ;
Prestin J. .
GEM - International Journal on Geomathematics, 2014, 5 (02) :143-162
[6]   Portal-Masked Environment Map Sampling [J].
Bitterli, Benedikt ;
Novak, Jan ;
Jarosz, Wojciech .
COMPUTER GRAPHICS FORUM, 2015, 34 (04) :13-19
[7]  
Chen M, 2001, SPRING EUROGRAP, P25
[8]  
Chen M, 2000, SPRING COMP SCI, P137
[9]   Wavelet importance sampling:: Efficiently evaluating products of complex functions [J].
Clarberg, P ;
Jarosz, W ;
Akenine-Möller, T ;
Jensen, HW .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :1166-1175
[10]   Exploiting visibility correlation in direct illumination [J].
Clarberg, Petrik ;
Akenine-Moller, Tomas .
COMPUTER GRAPHICS FORUM, 2008, 27 (04) :1125-1136