On the numerical computation of bivariate Lagrange polynomials

被引:13
作者
Dell'Accio, Francesco [1 ]
Di Tommaso, Filomena [1 ]
Siar, Najoua [1 ,2 ]
机构
[1] Univ Calabria, Dept Math & Comp Sci, Arcavacata Di Rende, CS, Italy
[2] Ibn Tofail Univ, Dept Math, Kenitra, Morocco
关键词
Bivariate Lagrange interpolation; Barycentric coordinates; Taylor polynomial; Condition number; Lebesgue constant;
D O I
10.1016/j.aml.2020.106845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a simple procedure for numerically computing the Lagrange interpolation polynomial on a unisolvent set of points in the plane. We suggest the use of the canonical polynomial basis centered at the barycenter of the set of points and the PA = LU decomposition for solving the associated Vandermonde system to compute the coefficients of the Taylor polynomial. We show that the 1-norm condition number of the Vandermonde matrix is an upper bound for the Lebesgue constant of the interpolation node set in the unit disk. Therefore, the analysis of the condition number can be useful to select the unisolvent set of nodes in a set of scattered nodes. Numerical experiments show the efficiency and accuracy of the proposed method. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 18 条
  • [1] [Anonymous], 2002, Accuracy and stability of numerical algorithms
  • [2] COMPUTING MULTIVARIATE FEKETE AND LEJA POINTS BY NUMERICAL LINEAR ALGEBRA
    Bos, L.
    De Marchi, S.
    Sommariva, A.
    Vianello, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) : 1984 - 1999
  • [3] Bos L, 2018, DOLOMITES RES NOTES, V11
  • [4] Bivariate Lagrange interpolation at the Padua points: The generating curve approach
    Bos, Len
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    Xu, Yuan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) : 15 - 25
  • [5] Computing Fekete and Lebesgue points: Simplex, square, disk
    Briani, Matteo
    Sommariva, Alvise
    Vianello, Marco
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) : 2477 - 2486
  • [6] Bivariate polynomial interpolation on the square at new nodal sets
    Caliari, M
    De Marchi, S
    Vianello, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) : 261 - 274
  • [7] Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave
    Caliari, Marco
    De Marchi, Stefano
    Sommariva, Alvise
    Vianello, Marco
    [J]. NUMERICAL ALGORITHMS, 2011, 56 (01) : 45 - 60
  • [8] An Efficient Trivariate Algorithm for Tetrahedral Shepard Interpolation
    Cavoretto, R.
    De Rossi, A.
    Dell'Accio, F.
    Di Tommaso, F.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [9] Cheney Elliott Ward, 2009, COURSE APPROXIMATION, V101
  • [10] COMPUTATIONAL ASPECTS OF POLYNOMIAL INTERPOLATION IN SEVERAL VARIABLES
    DEBOOR, C
    RON, A
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 705 - 727