Roles of lncRNAs and circRNAs in regulating skeletal muscle development

被引:43
作者
Chen, Rui [1 ]
Lei, Si [1 ]
Jiang, Ting [2 ]
Zeng, Jie [3 ]
Zhou, Shanyao [1 ]
She, Yanling [1 ]
机构
[1] Guangdong Second Prov Gen Hosp, Guangdong Tradit Med & Sports Injury Rehabil Res, 466 Xin Gang Zhong Rd, Guangzhou 510317, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Med Ultrason, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
circRNAs; development; differentiation; lncRNAs; proliferation; skeletal muscle; LONG-NONCODING RNA; ENHANCES MYOGENIC DIFFERENTIATION; DUCHENNE MUSCULAR-DYSTROPHY; CIRCULAR RNA; CELL-PROLIFERATION; PROMOTES DIFFERENTIATION; PROGENITOR CELLS; POOR-PROGNOSIS; MYOBLASTS; MALAT1;
D O I
10.1111/apha.13356
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The multistep biological process of myogenesis is regulated by a variety of myoblast regulators, such as myogenic differentiation antigen, myogenin, myogenic regulatory factor, myocyte enhancer factor2A-D and myosin heavy chain. Proliferation and differentiation during skeletal muscle myogenesis contribute to the physiological function of muscles. Certain non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in the regulation of muscle development, and the aberrant expressions of lncRNAs and circRNAs are associated with muscular diseases. In this review, we summarize the recent advances concerning the roles of lncRNAs and circRNAs in regulating the developmental aspects of myogenesis. These findings have remarkably broadened our understanding of the gene regulation mechanisms governing muscle proliferation and differentiation, which makes it more feasible to design novel preventive, diagnostic and therapeutic strategies for muscle disorders.
引用
收藏
页数:13
相关论文
共 111 条
  • [1] Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance
    Agudelo, Leandro Z.
    Ferreira, Duarte M. S.
    Dadyar, Shamim
    Cervenka, Igor
    Ketscher, Lars
    Izadi, Manizheh
    Liu Zhengye
    Furrer, Regula
    Handschin, Christoph
    Venckunas, Tomas
    Brazaitis, Marius
    Kamandulis, Sigitas
    Lanner, Johanna T.
    Ruas, Jorge L.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [2] NURR1 activation in skeletal muscle controls systemic energy homeostasis
    Amoasii, Leonela
    Sanchez-Ortiz, Efrain
    Fujikawa, Teppei
    Elmquist, Joel K.
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) : 11299 - 11308
  • [3] A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance
    Anderson, Douglas M.
    Anderson, Kelly M.
    Chang, Chi-Lun
    Makarewich, Catherine A.
    Nelson, Benjamin R.
    McAnally, John R.
    Kasaragod, Prasad
    Shelton, John M.
    Liou, Jen
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. CELL, 2015, 160 (04) : 595 - 606
  • [4] SKELETAL-MUSCLE ATROPHY DURING IMMOBILIZATION
    APPELL, HJ
    [J]. INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 1986, 7 (01) : 1 - 5
  • [5] Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice
    Ballarino, Monica
    Cipriano, Andrea
    Tita, Rossella
    Santini, Tiziana
    Desideri, Fabio
    Morlando, Mariangela
    Colantoni, Alessio
    Carrieri, Claudia
    Nicoletti, Carmine
    Musaro, Antonio
    O'Carroll, Donal
    Bozzoni, Irene
    [J]. EMBO JOURNAL, 2018, 37 (18)
  • [6] Novel Long Noncoding RNAs (lncRNAs) in Myogenesis: a miR-31 Overlapping lncRNA Transcript Controls Myoblast Differentiation
    Ballarino, Monica
    Cazzella, Valentina
    D'Andrea, Daniel
    Grassi, Luigi
    Bisceglie, Lavinia
    Cipriano, Andrea
    Santini, Tiziana
    Pinnaro, Chiara
    Morlando, Mariangela
    Tramontano, Anna
    Bozzoni, Irene
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2015, 35 (04) : 728 - 736
  • [7] Control of muscle formation by the fusogenic micropeptide myomixer
    Bi, Pengpeng
    Ramirez-Martinez, Andres
    Li, Hui
    Cannavino, Jessica
    McAnally, John R.
    Shelton, John M.
    Sanchez-Ortiz, Efrain
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. SCIENCE, 2017, 356 (6335) : 323 - 327
  • [8] Birnkrant DJ, 2018, LANCET NEUROL, V17, P251, DOI 10.1016/S1474-4422(18)30024-3
  • [9] Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse
    Borensztein, Maud
    Monnier, Paul
    Court, Franck
    Louault, Yann
    Ripoche, Marie-Anne
    Tiret, Laurent
    Yao, Zizhen
    Tapscott, Stephen J.
    Forne, Thierry
    Montarras, Didier
    Dandolo, Luisa
    [J]. DEVELOPMENT, 2013, 140 (06): : 1231 - 1239
  • [10] Skeletal muscle progenitor cells and the role of Pax genes
    Buckingham, Margaret
    [J]. COMPTES RENDUS BIOLOGIES, 2007, 330 (6-7) : 530 - 533