Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS

被引:17
|
作者
Pastirk, I. [1 ]
Zhu, X.
Martin, R. M.
Dantus, M.
机构
[1] Biophoton Solut Inc, Okemos, MI 48864 USA
[2] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
来源
OPTICS EXPRESS | 2006年 / 14卷 / 19期
关键词
D O I
10.1364/OE.14.008885
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the remote characterization and dispersion compensation ( pulse compression) of femtosecond pluses using multiphoton intrapulse interference phase scan (MIIPS). The results presented here were carried out at a distance of 28.9 m from the target. The method could be used with targets placed kilometers away. The amplified pulses arrive at the remote target within one percent of transform limit or accurately phase-shaped by user defined phase functions. From our experiment we measure the group velocity dispersion of air at 800 nm to be 20.1 +/- 1.5 fs(2)/m, which is in good agreement with published values. We consider this method for remote characterization and dispersion compensation to be an important step towards the development of reliable applications requiring the propagation of ultrashort pulses to remote targets. (c) 2006 Optical Society of America
引用
收藏
页码:8885 / 8889
页数:5
相关论文
共 50 条
  • [1] No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS
    Pastirk, I.
    Resan, Bojan
    Fry, Alan
    MacKay, John
    Dantus, M.
    OPTICS EXPRESS, 2006, 14 (20) : 9537 - 9543
  • [2] Precise measurement of arbitrary shaped and amplified femtosecond pulses
    Takasago, K
    Yada, A
    Miura, T
    Washio, M
    Kannari, F
    Torizuka, K
    Endo, A
    CLEO(R)/PACIFIC RIM 2001, VOL II, TECHNICAL DIGEST, 2001, : 732 - 733
  • [3] Dispersion and compensation of femtosecond laser pulses in the atmosphere
    Shen, Zhenmin
    Liu, Hongying
    Lan, Tian
    Li, Shaohui
    Ni, Guoqiang
    Liu, Haojie
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2013, 42 (04): : 940 - 946
  • [4] Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses
    Lee, SH
    Cavalieri, AL
    Fritz, DM
    Myaing, M
    Reis, DA
    OPTICS LETTERS, 2004, 29 (22) : 2602 - 2604
  • [5] DISPERSION COMPENSATION FOR FEMTOSECOND PULSES USING HIGH-INDEX PRISMS
    SALIN, F
    BRUN, A
    JOURNAL OF APPLIED PHYSICS, 1987, 61 (10) : 4736 - 4739
  • [6] Dispersion Compensation of an Optical System for Femtosecond Pulses Using a Ray-Tracing Program
    Kim, Seoyoung
    Lee, Hyunyong
    Kim, Tae Young
    Im, Jeong-eun
    Kim, Chal-won
    Hwangbo, Chang Kwon
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2018, 29 (01) : 1 - 6
  • [7] Quantum control of photodissociation using intense, femtosecond pulses shaped with third order dispersion
    Lev, U.
    Graham, L.
    Madsen, C. B.
    Ben-Itzhak, I.
    Bruner, B. D.
    Esry, B. D.
    Frostig, H.
    Heber, O.
    Natan, A.
    Prabhudesai, V. S.
    Schwalm, D.
    Silberberg, Y.
    Strasser, D.
    Williams, I. D.
    Zajfman, D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (20)
  • [8] Characterization of polarization shaped ultraviolet femtosecond laser pulses
    Seidel, Marco Thomas
    Zhang, Zhengyang
    Yan, Suxia
    Wells, Kym Lewis
    Tan, Howe-Siang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (11) : 2718 - 2725
  • [9] Chirping compensation of femtosecond pulses by using 1-D photonic crystals anomalous dispersion
    Belardini, A.
    Bosco, A.
    Leahu, G.
    Centini, M.
    Fazio, E.
    Sibilia, C.
    Bertolotti, M.
    Zhukovsky, S.
    Gaponenko, S. V.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES III (I.E. V), 2006, 6182
  • [10] Active compensation of large dispersion of femtosecond pulses for precision laser ranging
    Lee, Sang-Hyun
    Lee, Joohyung
    Kim, Young-Jin
    Lee, Keunwoo
    Kim, Seung-Woo
    OPTICS EXPRESS, 2011, 19 (05): : 4002 - 4008