Analog Gross Fault Identification in RF Circuits Using Neural Models and Constrained Parameter Extraction

被引:13
作者
Viveros-Wacher, Andres [1 ]
Ernesto Rayas-Sanchez, Jose [2 ]
Brito-Brito, Zabdiel [2 ]
机构
[1] Intel Corp, Zapopan 45109, Mexico
[2] ITESO Jesuit Univ Guadalajara, Dept Elect Syst & Informat, Tlaquepaque 45604, Mexico
关键词
Analog faults; artificial neural network (ANN); fault identification; fault injection; gross faults; parameter extraction; DIAGNOSIS; OPTIMIZATION; NETWORK;
D O I
10.1109/TMTT.2019.2914106
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The demand and relevance of efficient analog fault diagnosis methods for modern RF and microwave-integrated circuits increase with the growing need and complexity of analog and mixed-signal circuitry. The well-established digital fault diagnosis methods are insufficient for analog circuitry due to the intrinsic complexity in analog faults and their corresponding identification process. In this paper, we present an artificial neural network (ANN) modeling approach to efficiently emulate the injection of analog faults in RF circuits. The resulting metamodel is used for fault identification by applying an optimization-based process using a constrained parameter extraction formulation. A generalized neural modeling formulation to include auxiliary measurements in the circuit is proposed. This generalized formulation significantly increases the uniqueness of the faults identification process. The proposed methodology is illustrated by two faulty analog circuits: a CMOS RF voltage amplifier and a reconfigurable bandpass microstrip filter.
引用
收藏
页码:2143 / 2150
页数:8
相关论文
共 50 条
  • [1] Analog Fault Identification in RF Circuits using Artificial Neural Networks and Constrained Parameter Extraction
    Viveros-Wacher, Andres
    Rayas-Sanchez, Jose E.
    2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,
  • [2] An Experimental investigation on Feature Extraction and Fault Detection in Analog circuits using Fuzzy logic and Neural Network
    Rebecca, B.
    Sumathi, P.
    Christiana, M. Beulah Viji
    Gandhi, A. Sanjeevi
    Raghavendra, G. S.
    Victoria, D. Rosy Salomi
    Thiyagesan, M.
    Nisha, Y. Sherlin
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2025, 28 (01) : 42 - 47
  • [3] Parameter Identification of RF Transceiver Blocks Using Regressive Models
    Khereddine, R.
    Simeu, E.
    Mir, S.
    IFAC WORKSHOP ON PROGRAMMABLE DEVICES AND EMBEDDED SYSTEMS (PDES 2009), PROCEEDINGS, 2009, : 67 - 72
  • [4] Fault identification in analog PWL circuits based on homotopy
    Robotycki, A
    Zielonko, R
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 59 - 64
  • [5] GLOBAL PARAMETRIC FAULT IDENTIFICATION IN ANALOG ELECTRONIC CIRCUITS
    Jantos, Piotr
    Grzechca, Damian
    Rutkowski, Jerzy
    METROLOGY AND MEASUREMENT SYSTEMS, 2009, 16 (03) : 391 - 402
  • [6] Fault Isolation in Analog Circuits using Multi-Support Vector Neural Network
    Dennis, Binu
    Kariyappa, B. S.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 655 - 660
  • [7] Parameter identification of multibody vehicle models using neural networks
    Hobusch, Salim
    Nikelay, Ilker
    Nowakowski, Christine
    Woschke, Elmar
    MULTIBODY SYSTEM DYNAMICS, 2024, 61 (03) : 361 - 380
  • [8] Multifractal Analysis for Soft Fault Feature Extraction of Nonlinear Analog Circuits
    Lu, Xinmiao
    Zhao, Hong
    Lin, Haijun
    Wu, Qiong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [9] Test-Generation-Based Fault Detection in Analog VLSI Circuits Using Neural Networks
    Kalpana, Palanisamy
    Gunavathi, Kandasamy
    ETRI JOURNAL, 2009, 31 (02) : 209 - 214
  • [10] Adaptively Constrained Parameter Extraction for Robust Space Mapping Optimization of Microwave Circuits
    Koziel, Slawomir
    Bandler, John W.
    Cheng, Qingsha S.
    2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT), 2010, : 205 - 208