Analog Gross Fault Identification in RF Circuits Using Neural Models and Constrained Parameter Extraction

被引:14
作者
Viveros-Wacher, Andres [1 ]
Ernesto Rayas-Sanchez, Jose [2 ]
Brito-Brito, Zabdiel [2 ]
机构
[1] Intel Corp, Zapopan 45109, Mexico
[2] ITESO Jesuit Univ Guadalajara, Dept Elect Syst & Informat, Tlaquepaque 45604, Mexico
关键词
Analog faults; artificial neural network (ANN); fault identification; fault injection; gross faults; parameter extraction; DIAGNOSIS; OPTIMIZATION; NETWORK;
D O I
10.1109/TMTT.2019.2914106
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The demand and relevance of efficient analog fault diagnosis methods for modern RF and microwave-integrated circuits increase with the growing need and complexity of analog and mixed-signal circuitry. The well-established digital fault diagnosis methods are insufficient for analog circuitry due to the intrinsic complexity in analog faults and their corresponding identification process. In this paper, we present an artificial neural network (ANN) modeling approach to efficiently emulate the injection of analog faults in RF circuits. The resulting metamodel is used for fault identification by applying an optimization-based process using a constrained parameter extraction formulation. A generalized neural modeling formulation to include auxiliary measurements in the circuit is proposed. This generalized formulation significantly increases the uniqueness of the faults identification process. The proposed methodology is illustrated by two faulty analog circuits: a CMOS RF voltage amplifier and a reconfigurable bandpass microstrip filter.
引用
收藏
页码:2143 / 2150
页数:8
相关论文
共 40 条
[1]  
[Anonymous], P IEEE INT C EL MEAS
[2]  
[Anonymous], 1967, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, DOI [DOI 10.1016/0041-5553(67)90144-9, 10.1016/0041-5553(67)90144-9]
[3]   An aggressive approach to parameter extraction [J].
Bakr, MH ;
Bandler, JW ;
Georgieva, N .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (12) :2428-2439
[4]   FAULT-DIAGNOSIS OF ANALOG CIRCUITS [J].
BANDLER, JW ;
SALAMA, AE .
PROCEEDINGS OF THE IEEE, 1985, 73 (08) :1279-1325
[5]   HUBER OPTIMIZATION OF CIRCUITS - A ROBUST APPROACH [J].
BANDLER, JW ;
CHEN, SH ;
BIERNACKI, RM ;
GAO, L ;
MADSEN, K ;
YU, HY .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (12) :2279-2287
[6]  
Bhatta D, 2013, INT SYMP QUAL, P468, DOI 10.1109/ISQED.2013.6523653
[7]   RideNN: A New Rider Optimization Algorithm-Based Neural Network for Fault Diagnosis in Analog Circuits [J].
Binu, D. ;
Kariyappa, B. S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (01) :2-26
[8]  
Brito-Brito Z, 2009, 2009 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, P125
[9]   A virtual test-bench for analog circuit testability analysis and fault diagnosis [J].
Chakrabarty, S ;
Rajan, V ;
Ying, J ;
Mansjur, M ;
Pattipati, K ;
Deb, S .
1998 IEEE AUTOTESTCON PROCEEDINGS - IEEE SYSTEMS READINESS TECHNOLOGY CONFERENCE, 1998, :337-352
[10]  
Deng Y, 2000, 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, P1639, DOI 10.1109/ICOSP.2000.893415