Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

被引:43
|
作者
Ma, Shiqian [1 ]
Aybat, Necdet Serhat [2 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Convergence rate; convex optimization; iteration complexity; nonconvex optimization; principal component analysis (PCA); robust PCA (RPCA); c-stationary solution; LOW-RANK; CONVERGENCE RATE; SPARSE; PURSUIT; PCA;
D O I
10.1109/JPROC.2018.2846606
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Robust principal component analysis (RPCA) has drawn significant attention in the last decade due to its success in numerous application domains, ranging from bioinformatics, statistics, and machine learning to image and video processing in computer vision. RPCA and its variants such as sparse PCA and stable PCA can be formulated as optimization problems with exploitable special structures. Many specialized efficient optimization methods have been proposed to solve robust PCA and related problems. In this paper, we review existing optimization methods for solving convex and nonconvex relaxations/variants of RPCA, discuss their advantages and disadvantages, and elaborate on their convergence behaviors. We also provide some insights for possible future research directions including new algorithmic frameworks that might be suitable for implementing on multiprocessor setting to handle large-scale problems.
引用
收藏
页码:1411 / 1426
页数:16
相关论文
共 50 条
  • [21] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [22] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [23] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [24] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800
  • [25] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [26] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [27] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [28] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [29] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [30] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486