Computational Tools for the Identification and Interpretation of Sequence Motifs in Immunopeptidomes

被引:37
作者
Alvarez, Bruno [1 ]
Barra, Carolina [1 ]
Nielsen, Morten [1 ,2 ]
Andreatta, Massimo [1 ]
机构
[1] Univ Nacl San Martin, Inst Invest Biotecnol, San Martin, Buenos Aires, Argentina
[2] Tech Univ Denmark, Dept Bio & Hlth Informat, Lyngby, Denmark
基金
美国国家卫生研究院;
关键词
GibbsCluster; mass spectrometry; MHC; prediction models; sequence motifs; MHC CLASS-I; GIBBS SAMPLING APPROACH; MASS-SPECTROMETRY DATA; T-CELLS; PEPTIDE IDENTIFICATION; IMPROVED PREDICTION; HLA; ANTIGEN; BINDING; MOLECULES;
D O I
10.1002/pmic.201700252
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in proteomics and mass-spectrometry have widely expanded the detectable peptide repertoire presented by major histocompatibility complex (MHC) molecules on the cell surface, collectively known as the immunopeptidome. Finely characterizing the immunopeptidome brings about important basic insights into the mechanisms of antigen presentation, but can also reveal promising targets for vaccine development and cancer immunotherapy. This report describes a number of practical and efficient approaches to analyze immunopeptidomics data, discussing the identification of meaningful sequence motifs in various scenarios and considering current limitations. Guidelines are provided for the filtering of false hits and contaminants, and to address the problem of motif deconvolution in cell lines expressing multiple MHC alleles, both for the MHC class I and class II systems. Finally, it is demonstrated how machine learning can be readily employed by non-expert users to generate accurate prediction models directly from mass-spectrometry eluted ligand data sets.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction [J].
Abelin, Jennifer G. ;
Keskin, Derin B. ;
Sarkizova, Siranush ;
Hartigan, Christina R. ;
Zhang, Wandi ;
Sidney, John ;
Stevens, Jonathan ;
Lane, William ;
Zhang, Guang Lan ;
Eisenhaure, Thomas M. ;
Clauser, Karl R. ;
Hacohen, Nir ;
Rooney, Michael S. ;
Carr, Steven A. ;
Wu, Catherine J. .
IMMUNITY, 2017, 46 (02) :315-326
[2]  
Andreatta M., 2012, IMMUNOLOGY, DOI [10. 1111/j. 1365-2567. 2012. 03579. x, DOI 10.1111/J.1365-2567.2012]
[3]   Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules [J].
Andreatta, Massimo ;
Jurtz, Vanessa I. ;
Kaever, Thomas ;
Sette, Alessandro ;
Peters, Bjoern ;
Nielsen, Morten .
IMMUNOLOGY, 2017, 152 (02) :255-264
[4]   GibbsCluster: unsupervised clustering and alignment of peptide sequences [J].
Andreatta, Massimo ;
Alvarez, Bruno ;
Nielsen, Morten .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W458-W463
[5]   Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification [J].
Andreatta, Massimo ;
Karosiene, Edita ;
Rasmussen, Michael ;
Stryhn, Anette ;
Buus, Soren ;
Nielsen, Morten .
IMMUNOGENETICS, 2015, 67 (11-12) :641-650
[6]   Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach [J].
Andreatta, Massimo ;
Lund, Ole ;
Nielsen, Morten .
BIOINFORMATICS, 2013, 29 (01) :8-14
[7]   NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data [J].
Andreatta, Massimo ;
Schafer-Nielsen, Claus ;
Lund, Ole ;
Buus, Soren ;
Nielsen, Morten .
PLOS ONE, 2011, 6 (11)
[8]   Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions [J].
Bassani-Sternberet, Michal ;
Gfellert, David .
JOURNAL OF IMMUNOLOGY, 2016, 197 (06) :2492-2499
[9]   Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity [J].
Bassani-Sternberg, Michal ;
Chong, Chloe ;
Guillaume, Philippe ;
Solleder, Marthe ;
Pak, HuiSong ;
Gannon, Philippe O. ;
Kandalaft, Lana E. ;
Coukos, George ;
Gfeller, David .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08) :e1005725
[10]   Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry [J].
Bassani-Sternberg, Michal ;
Braunlein, Eva ;
Klar, Richard ;
Engleitner, Thomas ;
Sinitcyn, Pavel ;
Audehm, Stefan ;
Straub, Melanie ;
Weber, Julia ;
Slotta-Huspenina, Julia ;
Specht, Katja ;
Martignoni, Marc E. ;
Werner, Angelika ;
Hein, Rudiger ;
Busch, Dirk H. ;
Peschel, Christian ;
Rad, Roland ;
Cox, Jurgen ;
Mann, Matthias ;
Krackhardt, Angela M. .
NATURE COMMUNICATIONS, 2016, 7