Computational Tools for the Identification and Interpretation of Sequence Motifs in Immunopeptidomes

被引:37
作者
Alvarez, Bruno [1 ]
Barra, Carolina [1 ]
Nielsen, Morten [1 ,2 ]
Andreatta, Massimo [1 ]
机构
[1] Univ Nacl San Martin, Inst Invest Biotecnol, San Martin, Buenos Aires, Argentina
[2] Tech Univ Denmark, Dept Bio & Hlth Informat, Lyngby, Denmark
基金
美国国家卫生研究院;
关键词
GibbsCluster; mass spectrometry; MHC; prediction models; sequence motifs; MHC CLASS-I; GIBBS SAMPLING APPROACH; MASS-SPECTROMETRY DATA; T-CELLS; PEPTIDE IDENTIFICATION; IMPROVED PREDICTION; HLA; ANTIGEN; BINDING; MOLECULES;
D O I
10.1002/pmic.201700252
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in proteomics and mass-spectrometry have widely expanded the detectable peptide repertoire presented by major histocompatibility complex (MHC) molecules on the cell surface, collectively known as the immunopeptidome. Finely characterizing the immunopeptidome brings about important basic insights into the mechanisms of antigen presentation, but can also reveal promising targets for vaccine development and cancer immunotherapy. This report describes a number of practical and efficient approaches to analyze immunopeptidomics data, discussing the identification of meaningful sequence motifs in various scenarios and considering current limitations. Guidelines are provided for the filtering of false hits and contaminants, and to address the problem of motif deconvolution in cell lines expressing multiple MHC alleles, both for the MHC class I and class II systems. Finally, it is demonstrated how machine learning can be readily employed by non-expert users to generate accurate prediction models directly from mass-spectrometry eluted ligand data sets.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction
    Abelin, Jennifer G.
    Keskin, Derin B.
    Sarkizova, Siranush
    Hartigan, Christina R.
    Zhang, Wandi
    Sidney, John
    Stevens, Jonathan
    Lane, William
    Zhang, Guang Lan
    Eisenhaure, Thomas M.
    Clauser, Karl R.
    Hacohen, Nir
    Rooney, Michael S.
    Carr, Steven A.
    Wu, Catherine J.
    [J]. IMMUNITY, 2017, 46 (02) : 315 - 326
  • [2] Andreatta M., 2012, IMMUNOLOGY, DOI [10. 1111/j. 1365-2567. 2012. 03579. x, DOI 10.1111/J.1365-2567.2012]
  • [3] Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules
    Andreatta, Massimo
    Jurtz, Vanessa I.
    Kaever, Thomas
    Sette, Alessandro
    Peters, Bjoern
    Nielsen, Morten
    [J]. IMMUNOLOGY, 2017, 152 (02) : 255 - 264
  • [4] GibbsCluster: unsupervised clustering and alignment of peptide sequences
    Andreatta, Massimo
    Alvarez, Bruno
    Nielsen, Morten
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) : W458 - W463
  • [5] Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification
    Andreatta, Massimo
    Karosiene, Edita
    Rasmussen, Michael
    Stryhn, Anette
    Buus, Soren
    Nielsen, Morten
    [J]. IMMUNOGENETICS, 2015, 67 (11-12) : 641 - 650
  • [6] Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach
    Andreatta, Massimo
    Lund, Ole
    Nielsen, Morten
    [J]. BIOINFORMATICS, 2013, 29 (01) : 8 - 14
  • [7] NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data
    Andreatta, Massimo
    Schafer-Nielsen, Claus
    Lund, Ole
    Buus, Soren
    Nielsen, Morten
    [J]. PLOS ONE, 2011, 6 (11):
  • [8] Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions
    Bassani-Sternberet, Michal
    Gfellert, David
    [J]. JOURNAL OF IMMUNOLOGY, 2016, 197 (06) : 2492 - 2499
  • [9] Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity
    Bassani-Sternberg, Michal
    Chong, Chloe
    Guillaume, Philippe
    Solleder, Marthe
    Pak, HuiSong
    Gannon, Philippe O.
    Kandalaft, Lana E.
    Coukos, George
    Gfeller, David
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08) : e1005725
  • [10] Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry
    Bassani-Sternberg, Michal
    Braunlein, Eva
    Klar, Richard
    Engleitner, Thomas
    Sinitcyn, Pavel
    Audehm, Stefan
    Straub, Melanie
    Weber, Julia
    Slotta-Huspenina, Julia
    Specht, Katja
    Martignoni, Marc E.
    Werner, Angelika
    Hein, Rudiger
    Busch, Dirk H.
    Peschel, Christian
    Rad, Roland
    Cox, Jurgen
    Mann, Matthias
    Krackhardt, Angela M.
    [J]. NATURE COMMUNICATIONS, 2016, 7