An h-adaptive element-free Galerkin meshless method using a posteriori error estimator

被引:3
|
作者
Hajjout, Imane [1 ]
Haddouch, Manal [1 ]
Boudi, El Mostapha [1 ]
机构
[1] Mohammed V Univ Rabat, Turbomachinery Lab, Mohammadia Sch Engineers, BP 765, Rabat, Morocco
来源
MATERIALS TODAY COMMUNICATIONS | 2020年 / 25卷 / 25期
关键词
Meshless methods; Element free Galerkin (EFG); Super-convergent patch recovery (SPR); Refinement; Error estimator; Delaunay; SUPERCONVERGENT PATCH RECOVERY; POINT INTERPOLATION METHOD;
D O I
10.1016/j.mtcomm.2020.101468
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper provides an automatic h-refinement procedure for the element-free Galerkin (EFG) meshless method. This technique uses a posteriori Zienkiewicz and Zhu (Z-Z) error estimator based on super-convergent patch recovery where Gauss points are supposed to be super-convergent. The obtained recovered stresses are smooth and free of spurious oscillations observed in the EFG method. The error is calculated using the difference between the numerical and smoothed stresses, and the re-meshing is applied to the Gauss cells where the calculated error exceeds the admissible imposed error. Several examples are presented for linear and elastic problems showing the effectivity of the proposed approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An h-adaptive modified element-free Galerkin method
    Rossi, R
    Alves, MK
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2005, 24 (05) : 782 - 799
  • [2] An h-adaptive modified element-free Galerkin method
    Rossi, Rodrigo
    Alves, Marcelo Krajnc
    European Journal of Mechanics, A/Solids, 1600, 24 (05): : 782 - 799
  • [3] H-adaptive scheme for element-free Trefftz method
    Kita, E
    Kamiya, N
    Nomura, T
    BOUNDARY ELEMENT TECHNOLOGY XI, 1996, : 389 - 396
  • [4] A posteriori error estimator and h-adaptive finite element method for diffusion-advection-reaction problems
    Ostapov, O.
    Vovk, O.
    Shynkarenko, H.
    RECENT ADVANCES IN COMPUTATIONAL MECHANICS, 2014, : 329 - 337
  • [5] Meshless element-free Galerkin method in NDT applications
    Xuan, L
    Zeng, Z
    Shanker, B
    Udpa, L
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 21A & B, 2002, 615 : 1960 - 1967
  • [6] A NODE-BASED ERROR ESTIMATOR FOR THE ELEMENT-FREE GALERKIN (EFG) METHOD
    He, Yiqian
    Yang, Haitian
    Deeks, Andrew J.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (04)
  • [7] On error control in the element-free Galerkin method
    Zhuang, Xiaoying
    Heaney, Claire
    Augarde, Charles
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (03) : 351 - 360
  • [8] An Interpolating H-adaptive Element Free Galerkin Method for Elasticity Problems
    Wang, Min
    Peng, Gang
    Zhang, Xiaohua
    ENGINEERING LETTERS, 2022, 30 (04)
  • [9] A posteriori error estimator and an adaptive technique in meshless finite points method
    Angulo, A.
    Perez Pozo, L.
    Perazzo, F.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (11) : 1322 - 1338
  • [10] Error estimate of element-free Galerkin method for elasticity
    Cheng Rong-Jun
    Cheng Yu-Min
    ACTA PHYSICA SINICA, 2011, 60 (07)