Multiobjective parsimony enforcement for superior generalisation performance

被引:12
作者
Bernstein, Y [1 ]
Li, XD [1 ]
Ciesielski, V [1 ]
Song, A [1 ]
机构
[1] RMIT Univ, Sch Comp Sci & Informat Technol, Melbourne, Vic 3001, Australia
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1330841
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Program Bloat - the phenomenon of ever-increasing program size during a GP run - is a recognised and widespread problem. Traditional techniques to combat program bloat are program size limitations or parsimony pressure (penalty functions). These techniques suffer from a number of problems, in particular their reliance on parameters whose optimal values it is difficult to a priori determine. In this paper we introduce POPE-GP, a system that makes use of the NSGA-II multiobjective evolutionary algorithm as an alternative, parameter-free technique for eliminating program bloat. We test it on a classification problem and find that while vastly reducing program size, it does improve generalisation performance.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 17 条
[1]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
[2]  
Bleuler S, 2001, IEEE C EVOL COMPUTAT, P536, DOI 10.1109/CEC.2001.934438
[3]  
BLICKLE T, 1996, PARALLEL PROBLEM S 4, V1141, P564
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]  
Deb K., 2001, Multi-Objective Optimization using Evolutionary Algorithms
[6]  
deJong E., 2001, PROC GECCO 01, P11
[7]  
Eggermont J, 1999, LECT NOTES COMPUT SC, V1642, P281
[8]  
Gathercole C., 1996, Genetic Programming. Proceedings of the First Annual Conference 1996, P291
[9]  
KINNEAR KE, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P287
[10]  
LANGDON WB, 1997, 2 ON LIN WORLD C SOF, P13