Self-Generating High-Temperature Oxidation-Resistant Glass-Ceramic Coatings for C-C Composites Using UHTCs

被引:34
作者
Walker, Luke S. [1 ]
Corral, Erica L. [1 ]
机构
[1] Univ Arizona, Mat Sci & Engn Dept, Arizona Mat Lab, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
DIBORIDE-SILICON-CARBIDE; CARBON-CARBON COMPOSITES; ZIRCONIUM DIBORIDE; ZRB2-SIC COMPOSITES; CARBON/CARBON COMPOSITES; LOW-PRESSURE; IN-SITU; PROTECTION; BEHAVIOR; CRYSTALLIZATION;
D O I
10.1111/jace.13017
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon-carbon (C-C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high-temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high-temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600 degrees C. Oxidation protection for C-C composites can be achieved by duplicating the self-generating oxide chemistry of bulk UHTCs formed by a composite effect upon oxidation of ZrB2-SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE-TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600 degrees C. Pure SiC-based fillers are ineffective at protecting C-C from oxidation, whereas ZrB2-SiC filled C-C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self-generating coating, allowing oxide layer to spread across C-C surface, forming a protective oxide layer. Formation of a ZrO2-SiO2 glass-ceramic coating on C-C composite is believed to be responsible for enhanced oxidation protection. The glass-ceramic coating compares to bulk monolithic ZrB2-SiC ceramic oxide scale formed during DNE-TGA where a comparable glass-ceramic chemistry and surface layer forms, limiting oxygen diffusion.
引用
收藏
页码:3004 / 3011
页数:8
相关论文
共 62 条
  • [1] Investigation of oxidation protected C/C heat shield material in different plasma wind tunnels
    Auweter-Kurtz, M
    Hilfer, G
    Habiger, H
    Yamawaki, K
    Yoshinaka, T
    Speckmann, HD
    [J]. ACTA ASTRONAUTICA, 1999, 45 (02) : 93 - 108
  • [2] ACTIVE TO PASSIVE TRANSITION IN THE OXIDATION OF SILICON-CARBIDE AT HIGH-TEMPERATURE AND LOW-PRESSURE IN MOLECULAR AND ATOMIC OXYGEN
    BALAT, M
    FLAMANT, G
    MALE, G
    PICHELIN, G
    [J]. JOURNAL OF MATERIALS SCIENCE, 1992, 27 (03) : 697 - 703
  • [3] High-temperature oxidation of sintered silicon carbide under pure CO2 at low pressure:: active-passive transition
    Balat, M
    Berjoan, R
    Pichelin, G
    Rochman, D
    [J]. APPLIED SURFACE SCIENCE, 1998, 133 (1-2) : 115 - 123
  • [4] X-ray and microscopic studies of silicate melts containing ZrO2
    Barlett, HB
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1931, 14 (11) : 837 - 843
  • [5] Thick protective UHTC coatings for SiC-based structures: Process establishment
    Blum, Yigal D.
    Marschall, Jochen
    Hui, David
    Young, Steven
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) : 1453 - 1460
  • [6] On the viscosity of glass composites containing rigid inclusions
    Boccaccini, AR
    [J]. MATERIALS LETTERS, 1998, 34 (3-6) : 285 - 289
  • [7] GLASS SEALANTS FOR CARBON-CARBON COMPOSITES
    BUCHANAN, FJ
    LITTLE, JA
    [J]. JOURNAL OF MATERIALS SCIENCE, 1993, 28 (09) : 2324 - 2330
  • [8] Separating Test Artifacts from Material Behavior in the Oxidation Studies of HfB2-SiC at 2000°C and Above
    Carney, Carmen M.
    Parthasarathy, Triplicane A.
    Cinibulk, Michael K.
    [J]. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2013, 10 (02) : 293 - 300
  • [9] Oxidation Behavior of Zirconium Diboride Silicon Carbide Produced by the Spark Plasma Sintering Method
    Carney, Carmen M.
    Mogilvesky, Pavel
    Parthasarathy, Triplicane A.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (09) : 2046 - 2052
  • [10] Cheng LF, 2002, J AM CERAM SOC, V85, P989, DOI 10.1111/j.1151-2916.2002.tb00205.x