Jump-diffusion processes in random environments

被引:5
作者
Jakubowski, Jacek [1 ,2 ]
Nieweglowski, Mariusz [2 ,3 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00662 Warsaw, Poland
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
关键词
Jump-diffusion; Stochastic differential equations; Markov switching; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.jde.2014.05.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate jump-diffusion processes in random environments which are given as the weak solutions of SDEs. We formulate conditions ensuring existence and uniqueness in law of solutions. We investigate the Markov property. To prove uniqueness we solve a general martingale problem for cadlag processes. This result is of independent interest. Application of our results to generalized exponential Levy model are present in the last section. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2671 / 2703
页数:33
相关论文
共 25 条
  • [1] [Anonymous], CAM ST AD M
  • [2] [Anonymous], 1986, WILEY SERIES PROBABI
  • [3] [Anonymous], 2003, LIMIT THEOREMS STOCH, DOI DOI 10.1007/978-3-662-05265-5
  • [4] Bauer H., 1996, Probability theory, de Gruyter Studies in Mathematics, V23
  • [5] Becherer D, 2005, ANN APPL PROBAB, V15, P1111, DOI 10.1214/105051604000000846
  • [6] Bremaud P., 1981, POINT PROCESSES QUEU
  • [7] Integro-differential equations for option prices in exponential Levy models
    Cont, R
    Voltchkova, E
    [J]. FINANCE AND STOCHASTICS, 2005, 9 (03) : 299 - 325
  • [8] A finite difference scheme for option pricing in jump diffusion and exponential Levy models
    Cont, R
    Voltchkova, E
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) : 1596 - 1626
  • [9] Grigelionis B., 1981, LITH MATH J, V21, P213
  • [10] Hunt J., 2010, DP1003 ISBA UCL