When every endomorphism of a Σ-injective module is a sum of two commuting automorphisms

被引:1
作者
Siddique, Feroz [1 ,2 ]
机构
[1] Univ Wisconsin Coll, Dept Math, Madison, WI 53711 USA
[2] Univ Wisconsin Eau Claire Barron Cty, Dept Math, Rice Lake, WI 54868 USA
来源
RINGS, MODULES AND CODES | 2019年 / 727卷
关键词
Units; Sigma-injective modules; injective modules; directly finite; RINGS;
D O I
10.1090/conm/727/14646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that if M is an injective module then each endomorphism of M is a sum of two automorphisms if and only if End(M) has no homomorphic image isomorphic to the field of two elements. In this paper we show that if M is a Sigma-injective module such that each homomorphism of M is a sum of two commuting automorphisms then M must be directly finite.
引用
收藏
页码:349 / 355
页数:7
相关论文
共 24 条
[1]  
Bass H., 1962, Trans. Amer. Math. Soc, V102, P18
[2]   New characterization of Σ-injective modules [J].
Beidar, K. I. ;
Jain, S. K. ;
Srivastava, Ashish K. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (10) :3461-3466
[3]  
CAILLEAU A, 1969, CR ACAD SCI A MATH, V269, P997
[4]   DEDEKIND-FINITE STRONGLY CLEAN RINGS [J].
Camillo, Victor ;
Dorsey, Thomas J. ;
Nielsen, Pace P. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) :1619-1629
[5]  
Cartan H., 1956, Homological algebra
[6]  
Castgan F., 1968, Pac. J. Math, V27
[7]  
Dieudonne J, 1948, COMMENT MATH HELV, V21, P154
[8]   RINGS WITH ASCENDING CONDITION ON ANNIHILATORS [J].
FAITH, C .
NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (01) :179-&
[9]  
Faith C., 1967, LECT NOTES MATH, V49
[10]  
FREEDMAN H, 1968, J LONDON MATH SOC, V43, P305